Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

The Fréchet derivative of the tensor t-function

Published: 16 June 2023 Publication History

Abstract

The tensor t-function, a formalism that generalizes the well-known concept of matrix functions to third-order tensors, is introduced in Lund (Numer Linear Algebra Appl 27(3):e2288). In this work, we investigate properties of the Fréchet derivative of the tensor t-function and derive algorithms for its efficient numerical computation. Applications in condition number estimation and nuclear norm minimization are explored. Numerical experiments implemented by the t-Frechet toolbox hosted at https://gitlab.com/katlund/t-frechet illustrate properties of the t-function Fréchet derivative, as well as the efficiency and accuracy of the proposed algorithms.

References

[1]
Al-Mohy AH and Higham NJ Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation SIAM J. Matrix Anal. Appl. 2009 30 4 1639-1657
[2]
Arslan B, Noferini V, and Tisseur F The structured condition number of a differentiable map between matrix manifolds, with applications SIAM J. Matrix Anal. Appl. 2019 40 2 774-799
[3]
Bentbib AH, El Ghomari M, Jbilou K, and Reichel L The global Golub–Kahan method and Gauss quadrature for tensor function approximation Numer. Algorithms 2022
[4]
Bentbib AH, El Hachimi A, Jbilou K, and Ratnani A A tensor regularized nuclear norm method for image and video completion J. Opt. Th. Appl. 2022 192 2 401-425
[5]
Braman K Third-order tensors as linear operators on a space of matrices Linear Algebra Appl. 2010 433 7 1241-1253
[6]
Canyi L, Feng J, Chen Y, Liu W, Lin Z, and Yan Shuicheng Tensor robust principal component analysis with a new tensor nuclear norm IEEE Trans. Pattern Anal. Mach. Intell. 2020 42 4 925-938
[7]
Davies, P.: Structured conditioning of matrix functions. Electron. J. Linear Algebra, 11:132–161 (2004).
[8]
Davis PJ Circulant Matrices 2012 2 Providence AMS Chelsea Publishing
[9]
De la Cruz Cabrera, O., Jin, J., Noschese, S., Reichel, L.: Communication in complex networks. Appl. Numer. Math. 172:186–205 (2022).
[10]
Elizabeth, N., Lior, H., Haim, A., Misha K.: Stable tensor neural networks for rapid deep learning (2018). arXiv: 1811.06569
[11]
Estrada E and Higham DJ Network properties revealed through matrix functions SIAM Rev. 2010 52 4 696-714
[12]
Frommer Andreas, Lund Kathryn, and Szyld Daniel B Block Krylov subspace methods for functions of matrices Electron. Trans. Numer. Anal. 2017 47 100-126
[13]
Golub GH and Van Loan CF Matrix Computations 2013 4 Baltimore Johns Hopkins University Press
[14]
Gutknecht, M. H.: Block Krylov space methods for linear systems with multiple right-hand sides: an introduction. In: Siddiqi, A. H., Duff, I. S., Christensen, O. (eds) Mod. Math. Model. Methods Algorithms Real World Syst., pages 420–447, New Delhi, Anamaya (2007)
[15]
Higham, N. J.: Functions of matrices: theory and computation. Applied Mathematics. SIAM Publications, Philadelphia (2008).
[16]
Hochbruck M and Ostermann A Exponential integrators Acta Numer. 2010 19 209-286
[17]
Hoover, R. C., Caudle, K., Braman, K.: A new approach to multilinear dynamical systems and control (2021). arXiv: 2108.13583
[18]
Hosono, K., Ono, S., Miyata, T.: Weighted tensor nuclear norm minimization for color image denoising. In: 2016 IEEE Int. Conf. Image Process. ICIP, pages 3081–3085. IEEE (2016).
[19]
Ilić M, Turner IW, and Simpson DP A restarted Lanczos approximation to functions of a symmetric matrix IMA J. Numer. Anal. 2010 30 4 1044-1061
[20]
Kandolf P and Relton SD A block Krylov method to compute the action of the Fréchet derivative of a matrix function on a vector with applications to condition number estimation SIAM J. Sci. Comput. 2017 39 4 A1416-A1434
[21]
Kandolf P, Koskela A, Relton SD, and Schweitzer M Computing low-rank approximations of the Fréchet derivative of a matrix function using Krylov subspace methods Numer. Lin. Alg. Appl. 2021 28 6
[22]
Kathryn, L.: The tensor t-function: A definition for functions of third-order tensors. Numer Linear Algebra Appl. 27(3) (2020).
[23]
Kenney C and Laub AJ Condition estimates for matrix functions SIAM J. Matrix Anal. Appl. 1989 10 2 191-209
[24]
Kilmer ME and Martin CD Factorization strategies for third-order tensors Linear Algebra Appl. 2011 435 3 641-658
[25]
Kilmer ME, Braman K, Hao N, and Hoover RC Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging SIAM J. Matrix Anal. Appl. 2013 34 1 148-172
[26]
Kreimer N, Stanton A, and Sacchi MD Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction Geophysics 2013 78 6 1942-2156
[27]
Kressner, D.: A Krylov subspace method for the approximation of bivariate matrix functions. In Structured matrices in numerical linear algebra, pages 197–214. Springer-Verlag, Cham (2019).
[28]
Liu W and Jin X A study on T-eigenvalues of third-order tensors Linear Algebra Appl. 2021 612 357-374
[29]
Liu M, Zhang X, and Tang L Real color image denoising using t-product- based weighted tensor nuclear norm minimization IEEE Access 2019 7 182017-182026
[30]
Lu, C., Peng, X., Wei, Y.: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In: 2019 IEEECVF Conf. Comput. Vis. Pattern Recognit. CVPR, pages 5989–5997, Long Beach, CA, USA. IEEE (2019).
[31]
Malik, O.A., Ubaru, S., Horesh, L., Kilmer, M. E., Avron, H.: Tensor graph neural networks for learning on time varying graphs. In: NeurIPS 2019 Workshop Graph Represent. Learn (2019)
[32]
Miao Y, Qi L, and Wei Y Generalized tensor function via the tensor singular value decomposition based on the T-product Linear Algebra Appl. 2020 590 258-303
[33]
Neuberger H Exactly massless quarks on the lattice Phys. Lett. B 1998 417 1–2 141-144
[34]
Reichel L and Ugwu UO Tensor Arnoldi–Tikhonov and GMRES-Type methods for Ill-posed problems with a t-product structure J. Sci. Comput. 2022 90 1 1-39
[35]
Schweitzer, M.: Sensitivity of matrix function based network communicability measures: computational methods and a priori bounds (2023). arXiv e-print 2303.01339.
[36]
Schweitzer M Integral representations for higher-order Fréchet derivatives of matrix functions: quadrature algorithms and new results on the level-2 condition number Linear Algebra Appl. 2023 656 247-276
[37]
Thanou D, Dong X, Kressner D, and Frossard P Learning heat diffusion graphs IEEE Trans Signal Inf. Process Netw. 2017 3 3 484-499
[38]
Yuan M and Zhang C-H On tensor completion via nuclear norm minimization Found. Comput. Math. 2016 16 4 1031-1068
[39]
Zhang X and Ng MK A corrected tensor nuclear norm minimization method for noisy low-rank tensor completion SIAM J. Imaging Sci. 2019 12 2 1231-1273

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Calcolo: a quarterly on numerical analysis and theory of computation
Calcolo: a quarterly on numerical analysis and theory of computation  Volume 60, Issue 3
Sep 2023
335 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 16 June 2023
Accepted: 24 May 2023
Revision received: 22 May 2023
Received: 17 February 2023

Author Tags

  1. Tensors
  2. Multidimensional arrays
  3. Tensor t-product
  4. Matrix functions
  5. Fréchet derivative
  6. Block circulant matrices

Author Tags

  1. 15A69
  2. 65F60
  3. 65F35

Qualifiers

  • Research-article

Funding Sources

  • Max Planck Institute for Dynamics of Complex Technical Systems (MPI Magdeburg) (2)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media