Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Unveiling the complexity of human mobility by querying and mining massive trajectory data

Published: 01 October 2011 Publication History

Abstract

The technologies of mobile communications pervade our society and wireless networks sense the movement of people, generating large volumes of mobility data, such as mobile phone call records and Global Positioning System (GPS) tracks. In this work, we illustrate the striking analytical power of massive collections of trajectory data in unveiling the complexity of human mobility. We present the results of a large-scale experiment, based on the detailed trajectories of tens of thousands private cars with on-board GPS receivers, tracked during weeks of ordinary mobile activity. We illustrate the knowledge discovery process that, based on these data, addresses some fundamental questions of mobility analysts: what are the frequent patterns of people's travels? How big attractors and extraordinary events influence mobility? How to predict areas of dense traffic in the near future? How to characterize traffic jams and congestions? We also describe M-Atlas, the querying and mining language and system that makes this analytical process possible, providing the mechanisms to master the complexity of transforming raw GPS tracks into mobility knowledge. M-Atlas is centered onto the concept of a trajectory, and the mobility knowledge discovery process can be specified by M-Atlas queries that realize data transformations, data-driven estimation of the parameters of the mining methods, the quality assessment of the obtained results, the quantitative and visual exploration of the discovered behavioral patterns and models, the composition of mined patterns, models and data with further analyses and mining, and the incremental mining strategies to address scalability.

References

[1]
Abul, O., Bonchi, F., Nanni, M.: Never Walk Alone: Uncertainty for anonymity in moving objects databases. In: Proceedings of the 24nd IEEE International Conference on Data Engineering (ICDE'08) 2008
[2]
Abul, O., Bonchi, F., Nanni, M.: Anonymization of moving objects databases by clustering and perturbation. Inf. Syst. 35(8), 884-910 (2010)
[3]
Agenzia Milanese Mobilità e Ambiente. Indagine sulla mobilità delle persone dell'area milanese (2006)
[4]
Andrienko, G., Andrienko, N., Wrobel, S.:Visual analytics tools for analysis ofmovement data. SIGKDDExplor.Newslett. 9(2), 38-46 (2007)
[5]
Andrienko, G., Andrienko, N., Rinzivillo, S., Nanni, M., Pedreschi, D., Giannotti, F.: Interactive visual clustering of large collections of trajectories. In: IEEE Visual Analytics Science and Technology (VAST 2009) 3-10 (2009)
[6]
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. SIGMOD, 49-60 (1999)
[7]
Baglioni, M., de Macedo, J., Renso, C., Trasarti, R, Wachowicz, M. Towards semantic intepretation of movement data. In: AGILE Conference (2009)
[8]
Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geom. Theory Appl. 41(3), 111-125 (2008)
[9]
Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)
[10]
Chen, Z., Heng Tao, S., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations: an efficiency study. In: Proceedings of the 2010 International Conference on Management of data, SIGMOD '10, pp. 255-266
[11]
Cudré-Mauroux, P., Wu, E., Madden, S.T.: An adaptive storage system for very large trajectory data sets. In: International Conference on Data Engineering, pp. 109-120 (2010)
[12]
De Raedt, L., Jaeger M., Lee, S.D., Mannila, H.: A theory of inductive query answering. In: IEEE International Conference on Data Mining (2002)
[13]
Ester, M., Kriegel, H-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings on the Knowledge Discovery in Databases Conference, pp. 226-231 (1996)
[14]
Gaffney, S., Smyth, P.: Trajectory clustering with mixture of regression models. In: Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining, pp. 63- 72. ACM (1999)
[15]
GeoLife Web Site http://research.microsoft.com/en-us/projects/ geolife
[16]
GeoPKDD website. http://www.geopkdd.eu
[17]
Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 330-339 (2007)
[18]
Giannotti, F., Pedreschi, D. (Eds.) Mobility, Data Mining and Privacy--Geographic Knowledge Discovery. Springer, Berlin (2008)
[19]
Gonzalez, M., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453, 779-782 (2008)
[20]
Gudmundsson, J., van Kreveld, M.: Computing Longest Duration Flocks in Trajectory Data. In: 14th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 35-42. New York: ACM
[21]
Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Trans. Database Syst. 25(1), 1-42 (2000)
[22]
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Commun. ACM 39(11), 58-64 (1996)
[23]
Johnson, T., Lakshmanan, L.V.S., Ng, R.T.: The 3W model and algebra for unified data mining. In: VLDB '00: Proceedings of the 26th International Conference on Very Large Data Bases, pp. 21-32. Morgan Kaufmann, San Francisco (2000)
[24]
Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In Proceedings of 9th International Symposium on Spatial and Temporal Databases (SSTD'05), pp. 364-381. Springer, Berlin (2005)
[25]
Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework. In: SIGMOD Conference, pp. 593-604 (2007)
[26]
Li, Z., Ji, M., Lee, J.-G., Tang, L.A., Yu, Y., Han, J., Kays, R.: Movemine: mining moving object databases. In: SIGMOD Conference, pp. 1203-1206 (2010)
[27]
Monreale, A., Pinelli, F., Trasarti, R, Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: 15th ACM SIGKDD Conference on Knoledge Discovery and Data Mining (KDD'09) (2009)
[28]
Monreale, A., Andrienko, G., Andrienko, N., Giannotti, F., Pedreschi, D., Rinzivillo, S., Wrobel, S.: Movement data anonymity through generalization. Trans. Data Privacy 3(2), 91-121 (2010)
[29]
Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267-289 (2006)
[30]
Nanni, M., Trasarti, R., Renso, C., Giannotti, F., Pedreschi, D.: Advanced knowledge discovery on movement data with the Geo-PKDD system. In: Proceedings of the 13th International Conference on Extending Database Technology, pp. 693-696 (2010)
[31]
Octotelematics http://www.octotelematics.it/
[32]
Olteanu, A.-M., Trasarti, R., Couronn, T., Giannotti, F., Nanni, M., Smoreda, Z., Ziemlicki, C.:GSM data analysis for tourism application. In: Proceedings of the 7th International Symposium on Spatial Data Quality (ISSDQ) (2011)
[33]
Ortale, R., Ritacco, E., Pelekis, N., Trasarti, R., Costa, G., Giannotti, F., Manco., Renso, C., Theodoridis, Y.: The DAEDALUS framework: progressive querying and mining of movement data. In: 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS, p. 52 (2008)
[34]
Pelekis, N., Theodoridis, Y., Vosinakis, S., Panayiotopoulos, T.: Hermes: a framework for location-based data management. In: Proceedings of the International Conference on Extending Database Technology, pp. 1130-1134 (2006)
[35]
Quannan, L., Zheng, Y., Xing, X., Yukun, C., Wenyu, L., Wei-Ying, M.: Mining user similarity based on location history. In: Proceedings of the 16th ACM SIGSPATIAL International conference on Advances in Geographic Information Systems, GIS '08, vol. 34, pp. 1-34:10 (2008)
[36]
Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 7, 713 (2010)
[37]
Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of predictability in human mobility. Science 327, 1018-1021 (2010)
[38]
The PostGIS spatial database http://postgis.refractions.net/
[39]
Trasarti, R.: Mastering the Spatio-Temporal Knowledge Discovery Process. PhD in Computer science, University of Pisa (2010)
[40]
Trasarti, R., Giannotti, F., Nanni, M., Pedreschi, D., Renso, C.: A query language for mobility data mining. Int. J. Data Warehousing Mining (IJDWM) 7(1), 24-45 (2011)
[41]
Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: 17th ACM SIGKDD Conference on Knoledge Discovery and Data Mining (KDD'11) (2011)
[42]
Wachowicz, M., Ong, R., Renso, C., Nanni, M.: Discovering moving flock patterns among pedestrians through spatio-temporal coherence. Int. J. Geograph. Inf. Sci. (in press)
[43]
Wang, D., Pedreschi, D., Song, C., Giannotti, F., Barabási, A.-L.: Human mobility, social ties and link prediction. In: 17th ACM SIGKDD Conference on Knoledge Discovery and Data Mining (KDD'11) (2011)
[44]
Wang, H., Zaniolo C., Atlas, L.C.: A small but complete sql extension for data mining and data streams. In: Proceedings of International Conference of Very Large Data Base, pp. 1113-1116 (2003)
[45]
Wang, P., Gonzalez, M., Hidalgo, C.A., Barabási, A.-L.: Understanding the spreading patterns of mobile phone viruses. Science 324, 1071-1076 (2009)
[46]
Zheng, Y., Zhang, L., Xie, X., M, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, WWW '09, pp. 791-800

Cited By

View all
  • (2024)How is our mobility affected as we age? Findings from a 934 users field study of older adults conducted in an urban Asian cityProceedings of the Behavior Transformation by IoT International Workshop10.1145/3662008.3662016(27-32)Online publication date: 3-Jun-2024
  • (2024)TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera RecordsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671558(5979-5990)Online publication date: 25-Aug-2024
  • (2023)VOLTCom: A Novel Online Trajectory Compression Method Based on Vector ProcessingIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.329494124:12(14982-14993)Online publication date: 1-Dec-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image The VLDB Journal — The International Journal on Very Large Data Bases
The VLDB Journal — The International Journal on Very Large Data Bases  Volume 20, Issue 5
October 2011
148 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2011

Author Tags

  1. Mobility patterns
  2. Movement analysis
  3. Spatio-temporal data mining
  4. Trajectories

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)42
  • Downloads (Last 6 weeks)9
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)How is our mobility affected as we age? Findings from a 934 users field study of older adults conducted in an urban Asian cityProceedings of the Behavior Transformation by IoT International Workshop10.1145/3662008.3662016(27-32)Online publication date: 3-Jun-2024
  • (2024)TrajRecovery: An Efficient Vehicle Trajectory Recovery Framework based on Urban-Scale Traffic Camera RecordsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671558(5979-5990)Online publication date: 25-Aug-2024
  • (2023)VOLTCom: A Novel Online Trajectory Compression Method Based on Vector ProcessingIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.329494124:12(14982-14993)Online publication date: 1-Dec-2023
  • (2022)Abnormal behavior detection method of highway vehicle based on BP neural networkProceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering10.1145/3573428.3573744(1795-1800)Online publication date: 21-Oct-2022
  • (2022)City indicators for geographical transfer learning: an application to crash predictionGeoinformatica10.1007/s10707-022-00464-326:4(581-612)Online publication date: 1-Oct-2022
  • (2021)Dynamic Study of Intelligent Traffic Behaviour Based on Multiple Traffic ModesScientific Programming10.1155/2021/72549072021Online publication date: 1-Jan-2021
  • (2021)Location Prediction for Indoor Spaces based on Trajectory Similarity2021 4th International Conference on Data Science and Information Technology10.1145/3478905.3478983(402-407)Online publication date: 23-Jul-2021
  • (2020)Exploring the Social Learning of Taxi Drivers in Latent Vehicle-to-Vehicle NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2019.291522819:8(1804-1817)Online publication date: 1-Aug-2020
  • (2020)Deep multi-task learning for individuals origin–destination matrices estimation from census dataData Mining and Knowledge Discovery10.1007/s10618-019-00662-y34:1(201-230)Online publication date: 1-Jan-2020
  • (2018)Trajectory-based social circle inferenceProceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3274895.3274908(369-378)Online publication date: 6-Nov-2018
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media