Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Kursawe and ZDT functions optimization using hybrid micro genetic algorithm (HMGA)

Published: 01 December 2015 Publication History

Abstract

A hybrid micro genetic algorithm (HMGA) is proposed for Pareto optimum search focusing on the Kursawe and ZDT test functions. HMGA is a fusion of the micro genetic algorithm (MGA) and the elitism concept of fast Pareto genetic algorithm. The effectiveness of HMGA in Pareto optimal convergence was investigated with two performance indicators (i.e. generational distance and spacing). To measure HMGA's performance, a comparison study was conducted between HMGA and MGA. In this work, HMGA is outperformed MGA in the search for Pareto optimal front and capable of solving different difficulty of MOPs.

References

[1]
Baesler F, Palma C (2014) Multiobjective parallel machine scheduling in the sawmill industry using memetic algorithms. Int J Adv Manuf Technol 74(5-8):757-768
[2]
Banzhaf W et al (1998) Genetic programming: an introduction, vol 1. Morgan Kaufmann, San Francisco
[3]
Bartz-Beielstein T, Limbourg P, Mehnen J, Schmitt K, Parsopoulos, KE, Vrahatis MN (2003) Particle swarm optimizers for Pareto optimization with enhanced archiving techniques. In: Evolutionary computation, 2003. CEC'03. The 2003 Congress on, IEEE
[4]
Bastos-Filho CJA, Chaves DAR, eSilva FSF, Pereira HA, Martins-Filho JF (2011) Wavelength assignment for physical-layer-impaired optical networks using evolutionary computation. Opt Commun Netw IEEE/OSA J 3(3):178-188
[5]
Beyer H-G (2001) The theory of evolution strategies. Springer, Heidelberg
[6]
Carcangiu S, Fanni A, Montisci A (2008) Multiobjective tabu search algorithms for optimal design of electromagnetic devices. Magn IEEE Trans 44(6):970-973
[7]
Coello CC, Lamont GB (2005) An introduction to multi-objective evolutionary algorithms and their applications. Appl Multi-Object Evol Algorithms 1:1-28
[8]
Coello CAC, Pulido G (2005) Multiobjective structural optimization using a microgenetic algorithm. Struct Multidiscip Optim 30:388-403
[9]
Dasheng L, Tan KC, Goh CK, Ho WK (2007) A multiobjective memetic algorithm based on particle swarm optimization. Syst Man Cybern Part B: Cybern IEEE Trans 37(1):42-50
[10]
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput IEEE Trans 6(2):182-197
[11]
Deb K (2008) Introduction to evolutionary multiobjective optimization. In: Branke J (ed) Multiobjective optimization. Springer, Berlin, Heidelberg, pp 59-96
[12]
Deb K (2010) Recent developments in evolutionary multi-objective optimization. In: Ehrgott M, Figueira JR, Greco S (eds) Trends in multiple criteria decision analysis. Springer, US, pp 339-368
[13]
Durillo JJ, Nebro AJ (2011) jMetal: a Java framework for multiobjective optimization. Adv Eng Softw 42(10):760-771
[14]
Eiben AE, Bäck T (1997) Empirical investigation of multiparent recombination operators in evolution strategies. Evol Comput 5(3):347-365
[15]
Emmerich Michael, Deutz André (2006) Multicriteria optimization and decision making. LIACS, Leiden university, NL
[16]
Eskandari H, Geiger C (2008) A fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problems. J Heuristics 14(3):203-241
[17]
Fogel DB (1992) Using evolutionary programming for modeling: an ocean acoustic example. Ocean Eng IEEE J 17(4):333-340
[18]
Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation Discussion and generalization. In: ICGA
[19]
Ho SL, Yang S, Ni G, Wong HC (2002) A tabu method to find the Pareto solutions of multiobjective optimal design problems in electromagnetics. Magn IEEE Trans 38(2):1013-1016
[20]
Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor
[21]
Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: IEEE World Congress on Computational Intelligence. Proceedings of the 1st IEEE Conference on Evolutionary Computation, 1994
[22]
Hwang C-L, Masud ASM (1979) Multiple objective decision making¿ methods and applications: a state-of-the-art survey. In: Albach H, Balakrishnan AV, Beckmann M, Dhrymes P, Green J, Hildenbrand W, Krelle W, Kunzi HP, Ritter K, Sato R, Schelbert H, Schonfeld P (eds) Lecture notes in economics and mathematical systems. Springer, Berlin, Heidelberg
[23]
Iba H, Aranha C (2012) Introduction to genetic algorithms. In: Lim M-H, Ong Y-S (eds) Practical applications of evolutionary computation to financial engineering. Springer, Berlin, Heidelberg, pp 1-17
[24]
Knowles J (2006) ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. Evol Comput IEEE Trans 10(1):50-66
[25]
Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8(2):149-172
[26]
Kursawe F (1991) A variant of evolution strategies for vector optimization. In: Schwefel H-P, Männer R (eds) Parallel problem solving from nature. Springer, Berlin, Heidelberg, pp 193-197
[27]
Leung M-F, Ng S-C, Cheung C-C, Lui AK (2014) A new strategy for finding good local guides in MOPSO. In: Evolutionary computation (CEC), 2014 IEEE Congress on, IEEE
[28]
Lipinski P (2012) Practical applications of evolutionary computation to financial engineering: robust techniques for forecasting, trading, and hedging (Iba, H. and Aranha, C.C.; 2012)[book review]. Comput Intell Mag IEEE 7(2):75-76
[29]
Lughofer E (2012) A dynamic split-and-merge approach for evolving cluster models. Evol Syst 3(3):135-151
[30]
Maheta HH, Dabhi VK (2014) An improved SPEA2 multi objective algorithm with non dominated elitism and generational crossover. In: 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT)
[31]
Nebro AJ, Luna F, Alba E, Dorronsoro B, Durillo JJ, Beham A (2008) AbYSS: adapting scatter search to multiobjective optimization. Evol Comput IEEE Trans 12(4):439-457
[32]
O'Mahony C, Wilson N (2011) Sorted-pareto dominance: an extension to the Pareto Dominance relation and its application in Soft Constraints. 11th Workshop on Preferences and Soft Constraints
[33]
Precup R-E, David R-C, Petriu EM, Preitl S, Paul AS (2011) Gravitational search algorithm-based tuning of fuzzy control systems with areduced parametric sensitivity. In: Gaspar-Cunha A (ed) Soft computing in industrial applications. Springer, Berlin, Heidelberg, pp 141-150
[34]
Pulido GT, Coello CAC (2004) Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Deb K (ed) Genetic and evolutionary computation-GECCO 2004. Springer
[35]
Raquel CR, Naval PC Jr (2005) An effective use of crowding distance in multiobjective particle swarm optimization. In: Proceedings of the 2005 conference on Genetic and evolutionary computation, ACM
[36]
Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. DTIC Document
[37]
Smith KI, Everson RM, Fieldsend JE, Murphy C, Misra R (2008) Dominance-based multiobjective simulated annealing. Evol Comput IEEE Trans 12(3):323-342
[38]
Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2(3):221-248
[39]
Van Veldhuizen DA, Lamont GB (2000) On measuring multiobjective evolutionary algorithm performance. In: Evolutionary computation, 2000. Proceedings of the 2000 Congress on, IEEE
[40]
Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis. Technical Report TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio
[41]
Wang J, Liu W, Zhang W, Yang B (2013) Multi-objective particle swarm optimization based on self-update and grid strategy. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering, Springer
[42]
Yang F-C, Ni B (2014) Water flow-like optimization algorithm for multi-objective continuous optimization problem. In: Proceedings of 2013 4th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2013), Springer
[43]
Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173-195
[44]
Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK)
[45]
Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evol Comput IEEE Trans 3(4):257-271

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Soft Computing - A Fusion of Foundations, Methodologies and Applications
Soft Computing - A Fusion of Foundations, Methodologies and Applications  Volume 19, Issue 12
December 2015
315 pages
ISSN:1432-7643
EISSN:1433-7479
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 2015

Author Tags

  1. Hybrid algorithm
  2. Kursawe test function
  3. Optimisation
  4. ZDT test function

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media