Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Computing the Flip Distance Between Triangulations

Published: 01 September 2017 Publication History

Abstract

Let $$\mathcal{{T}}$$T be a triangulation of a set $$\mathcal{{P}}$$P of n points in the plane, and let e be an edge shared by two triangles in $$\mathcal{{T}}$$T such that the quadrilateral Q formed by these two triangles is convex. A flip of e is the operation of replacing e by the other diagonal of Q to obtain a new triangulation of $$\mathcal{{P}}$$P from $$\mathcal{{T}}$$T. The flip distance between two triangulations of $$\mathcal{{P}}$$P is the minimum number of flips needed to transform one triangulation into the other. The Flip Distance problem asks if the flip distance between two given triangulations of $$\mathcal{{P}}$$P is at most k, for some given $$k \in \mathbb {N}$$kźN. It is a fundamental and a challenging problem. We present an algorithm for the Flip Distance problem that runs in time $$\mathcal {O}(n + k \cdot c^{k})$$O(n+k·ck), for a constant $$c \le 2 \cdot 14^{11}$$c≤2·1411, which implies that the problem is fixed-parameter tractable. We extend our results to triangulations of polygonal regions with holes, and to labeled triangulated graphs.

References

[1]
Aichholzer, O., Alvarez, V., Hackl, T., Pilz, A., Speckmann, B., Vogtenhuber, B.: An improved lower bound on the minimum number of triangulations. In: 32nd International Symposium on Computational Geometry (SoCG 2016). Leibniz International Proceedings in Informatics, vol. 51, pp. 7:1---7:16. Leibniz-Zentrum fuer Informatik, Dagstuhl (2016)
[2]
Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangulations of planar point sets. Comput. Geom. 29(2), 135---145 (2004)
[3]
Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a simple polygon is NP-complete. Discrete Comput. Geom. 54(2), 368---389 (2015)
[4]
Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60---80 (2009)
[5]
Brodal, G.S., Fagerberg, R.: Dynamic representation of sparse graphs. In: Dehne, F., et al. (eds.) Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 1663, pp. 342---351. Springer, Berlin (1999)
[6]
Cleary, S., St. John, K.: Rotation distance is fixed-parameter tractable. Inf. Process. Lett. 109(16), 918---922 (2009)
[7]
Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Heidelberg (2010)
[8]
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)
[9]
Gao, Z., Urrutia, J., Wang, J.: Diagonal flips in labelled planar triangulations. Graphs Comb. 17(4), 647---657 (2001)
[10]
Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. J. UCS 2(8), 570---579 (1996)
[11]
Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. Assoc. Comput. Mach. 21(4), 549---568 (1974)
[12]
Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs. In: Book, R.V., et al. (eds.) Sixth Annual ACM Symposium on Theory of Computing, pp. 172---184. Association for Computing Machinery, New York (1974)
[13]
Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22(3), 333---346 (1999)
[14]
Kanj, I., Xia, G.: Flip distance is in $$FPT$$FPT Time $${\cal{O}}(n+ k \cdot c^k)$$O(n+k·ck). In: Mayr, E.W., Ollinger, N. (eds.) 32nd International Symposium on Theoretical Aspects of Computer Science. Leibniz International Proceedings in Informatics, vol. 30, pp. 500---512. Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)
[15]
Kocay, W., Kreher, D.L.: Graphs, Algorithms, and Optimization. Discrete Mathematics and Its Applications, 2nd edn. CRC Press, Boca Raton (2017)
[16]
Lawson, C.L.: Transforming triangulations. Discrete Math. 3(4), 365---372 (1972)
[17]
De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)
[18]
Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is NP-complete. Comput. Geom. 49, 17---23 (2015)
[19]
Lucas, J.M.: An improved kernel size for rotation distance in binary trees. Inf. Process. Lett. 110(12---13), 481---484 (2010)
[20]
Mori, R., Nakamoto, A., Ota, K.: Diagonal flips in Hamiltonian triangulations on the sphere. Graphs Comb. 19(3), 413---418 (2003)
[21]
Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and beyond. In: Ahn, H.-K., et al. (eds.) Algorithms and Computation. Lecture Notes in Computer Science, vol. 8889, pp. 452---463. Springer, Cham (2014)
[22]
Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science, vol. 8246, pp. 281---294. Springer, Cham (2013)
[23]
Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over tree decompositions. In: Cygan, M., Heggernes, P. (eds.) Parameterized and Exact computation. Lecture Notes in Computer Science, vol. 8894, pp. 246---257. Springer, Cham (2014)
[24]
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications, vol. 31. Oxford University Press, Oxford (2006)
[25]
Okabe, A., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and Applications of Voronoă¿ Diagrams. Applied Probability and Statistics. Wiley Series in Probability and Mathematical Statistics, Wiley, Chichester (1992)
[26]
Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard. Comput. Geom. 47(5), 589---604 (2014)
[27]
Saalfeld, A.: Joint triangulations and triangulation maps. In: CG87 Third Annual Symposium on Computational Geometry, pp. 195---204. Association for Computing Machinery, New York (1987)
[28]
Schumaker, L.L.: Triangulations in CAGD. IEEE Comput. Graph. Appl. 13(1), 47---52 (1993)
[29]
Sibson, R.: Locally equiangular triangulations. Comput. J. 21(3), 243---245 (1978)
[30]
Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1(3), 647---681 (1988)
[31]
Sleator, D.D., Tarjan, R.E., Thurston, W.P.: Short encodings of evolving structures. SIAM J. Discrete Math. 5(3), 428---450 (1992)
[32]
Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Dtsch. Math.-Ver. 46, 26---32 (1936)
[33]
Watson, D.F., Philip, G.M.: Systematic triangulations. Comput. Vis. Graph. Image Process. 22(2), 310 (1983)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 58, Issue 2
September 2017
250 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2017

Author Tags

  1. Flip distance
  2. Parameterized complexity
  3. Triangulated graphs
  4. Triangulations

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)A survey of parameterized algorithms and the complexity of edge modificationComputer Science Review10.1016/j.cosrev.2023.10055648:COnline publication date: 1-May-2023
  • (2021)An improved FPT algorithm for the flip distance problemInformation and Computation10.1016/j.ic.2021.104708281:COnline publication date: 1-Dec-2021
  • (2021)Flip Distances Between Graph OrientationsAlgorithmica10.1007/s00453-020-00751-183:1(116-143)Online publication date: 1-Jan-2021
  • (2019)Convex dominating sets in maximal outerplanar graphsDiscrete Applied Mathematics10.1016/j.dam.2019.02.029265:C(142-157)Online publication date: 31-Jul-2019
  • (2019)A Proof of the Orbit Conjecture for Flipping Edge-Labelled TriangulationsDiscrete & Computational Geometry10.1007/s00454-018-0035-861:4(880-898)Online publication date: 1-Jun-2019
  • (2019)Flip Distances Between Graph OrientationsGraph-Theoretic Concepts in Computer Science10.1007/978-3-030-30786-8_10(120-134)Online publication date: 19-Jun-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media