Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Space Exploration via Proximity Search

Published: 01 September 2016 Publication History

Abstract

We investigate what computational tasks can be performed on a point set in $${\mathbb {R}}^d$$Rd, if we are only given black-box access to it via nearest-neighbor search. This is a reasonable assumption if the underlying point set is either provided implicitly, or it is stored in a data structure that can answer such queries. In particular, we show the following:(A)One can compute an approximate bi-criteria k-center clustering of the point set, and more generally compute a greedy permutation of the point set.(B)One can decide if a query point is (approximately) inside the convex-hull of the point set. We also investigate the problem of clustering the given point set, such that meaningful proximity queries can be carried out on the centers of the clusters, instead of the whole point set.

References

[1]
Andersson, L.-E., Stewart, N.F.: Introduction to the Mathematics of Subdivision Surfaces. SIAM, Philadelphia (2010)
[2]
Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an approximate version of Caratheodory's theorem. In: Proceedings of 47th Annual Symposium on the Theory of Computing (STOC), pp. 361---369 (2015)
[3]
Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics. Springer, Berlin (2006)
[4]
Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930---933 (1986)
[5]
Blinn, J.F.: A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 235---256 (1982)
[6]
Boissonnat, J.-D., Guibas, L.J., Oudot, S.: Learning smooth shapes by probing. Comput. Geom. Theory Appl. 37(1), 38---58 (2007)
[7]
Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank---Wolfe algorithm. ACM Trans. Algorithms 6(4), 63 (2010)
[8]
Cole, R., Yap, C.K.: Shape from probing. J. Algorithms 8(1), 19---38 (1987)
[9]
Feder, T., Greene, D. H.: Optimal algorithms for approximate clustering. In: Proceedings of 20th Annual ACM Aymposium on Theory of computing (STOC), pp. 434---444 (1988)
[10]
Goel, A., Indyk, P., Varadarajan, K. R.: Reductions among high dimensional proximity problems. In: Proceedings of 12th ACM---SIAM Symposium on Discrete Algorithms (SODA), pp. 769---778, (2001)
[11]
Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293---306 (1985)
[12]
Har-Peled, S.: Geometric Approximation Algorithms. Mathematical Surveys and Monographs, vol. 173. American Mathematical Society, Providence (2011)
[13]
Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. Theory Comput. 8, 321---350 (2012). Special issue in honor of Rajeev Motwani
[14]
Har-Peled, S., Kumar, N., Mount, D., Raichel, B.: Space exploration via proximity search. CoRR, http://arxiv.org/abs/1412.1398 (2014)
[15]
Har-Peled, S., Mendel, M.: Fast construction of nets in low dimensional metrics, and their applications. SIAM J. Comput. 35(5), 1148---1184 (2006)
[16]
Indyk, P.: Nearest neighbors in high-dimensional spaces. In: Goodman, J.E., O'Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chapter 39, 2nd edn, pp. 877---892. CRC Press, Boca Raton (2004)
[17]
Kalantari, B.: A characterization theorem and an algorithm for a convex hull problem. Ann. Oper. Res. 226(1), 301---349 (2015)
[18]
Mandelbrot, B.B.: The Fractal Geometry of Nature. Macmillan, New York (1983)
[19]
Matoušek, J., Seidel, R., Welzl, E.: How to net a lot with little: small $$\varepsilon $$¿-nets for disks and halfspaces. In: Proceedings of 6th Annual ACM Symposium on Computational Geometry (SoCG), pp. 16---22 (1990)
[20]
Mulvey, J.M., Beck, M.P.: Solving capacitated clustering problems. Eur. J. Oper. Res. 18, 339---348 (1984)
[21]
Novikoff, A.B.J.: On convergence proofs on perceptrons. Proc. Symp. Math. Theo. Automata 12, 615---622 (1962)
[22]
Panahi, F., Adler, A., van der Stappen, A. F., Goldberg, K.: An efficient proximity probing algorithm for metrology. In: Proceedings of IEEE International Conference on Automation Science and Engineering (CASE), pp. 342---349 (2013)
[23]
Smelik, R. M., De Kraker, K. J., Groenewegen, S. A., Tutenel, T., Bidarra, R.: A survey of procedural methods for terrain modelling. In: Proceedings of the CASA. Workshop on 3D Advanced Media In Gaming and Simulation (2009)
[24]
Skiena, S.S.: Problems in geometric probing. Algorithmica 4, 599---605 (1989)
[25]
Skiena, S.S.: Geometric reconstruction problems. In: Goodman, J.E., O'Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, Chapter 26, pp. 481---490. CRC Press LLC, Boca Raton (1997)
[26]
Wikipedia. Atomic force microscopy--Wikipedia, The Free Encyclopedia (2014)

Cited By

View all
  • (2024)Computing A Well-Representative Summary of Conjunctive Query ResultsProceedings of the ACM on Management of Data10.1145/36958352:5(1-27)Online publication date: 7-Nov-2024
  • (2021)Active-Learning a Convex Body in Low DimensionsAlgorithmica10.1007/s00453-021-00807-w83:6(1885-1917)Online publication date: 1-Jun-2021

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 56, Issue 2
September 2016
253 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2016

Author Tags

  1. Approximation algorithms
  2. Clustering
  3. Nearest neighbors

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Computing A Well-Representative Summary of Conjunctive Query ResultsProceedings of the ACM on Management of Data10.1145/36958352:5(1-27)Online publication date: 7-Nov-2024
  • (2021)Active-Learning a Convex Body in Low DimensionsAlgorithmica10.1007/s00453-021-00807-w83:6(1885-1917)Online publication date: 1-Jun-2021

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media