Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Segmentation-driven feature-preserving mesh denoising

Published: 29 November 2023 Publication History

Abstract

Feature-preserving mesh denoising has received noticeable attention in visual media, with the aim of recovering high-fidelity, clean mesh shapes from the ones that are contaminated by noise. Existing denoising methods often design smaller weights for anisotropic surfaces and larger weights for isotropic surfaces in order to preserve sharp features, such as edges or corners, on the mesh shapes. However, they often disregard the fact that such small weights on anisotropic surfaces still pose negative impacts on the denoising outcomes and detail preservation results on the shapes. In this paper, we propose a novel segmentation-driven mesh denoising method which performs region-wise denoising, and thus avoids the disturbance of anisotropic neighbour faces for better feature preservation results. Also, our backbone can be easily embedded into commonly used mesh denoising frameworks. Extensive experiments have demonstrated that our method can enhance the denoising results on a wide range of synthetic and real mesh models, both quantitatively and visually.

References

[1]
Ströter D, Mueller-Roemer JS, Weber D, and Fellner DW Fast harmonic tetrahedral mesh optimization Vis. Comput. 2022 38 9 3419-3433
[2]
Jia S, Zhang W, Wang G, Pan Z, and Yu X A real-time deformable cutting method using two levels of linked voxels for improved decoupling between collision and rendering Vis. Comput. 2022 39 2 765-783
[3]
Prashant G A survey of modeling, rendering and animation of clouds in computer graphics Vis. Comput. 2020 37 7 1931-1948
[4]
Sun X, Rosin PL, Martin R, and Langbein F Fast and effective feature-preserving mesh denoising IEEE Trans. Vis. Comput. Graph. 2007 13 5 925-938
[5]
Zheng Y, Fu H, Au OKC, and Tai CL Bilateral normal filtering for mesh denoising IEEE Trans. Vis. Comput. Graph. 2011 17 10 1521-1530
[6]
Zhang W, Deng B, Zhang J, Bouaziz S, and Liu L Guided mesh normal filtering Comput. Graph. Forum 2015 34 7 23-34
[7]
Lu X, Liu X, Deng Z, and Chen W An efficient approach for feature-preserving mesh denoising Opt. Lasers Eng. 2017 90 186-195
[8]
Hildebrandt K and Polthier K Anisotropic filtering of non-linear surface features Comput. Graph. Forum 2004 23 3 391-400
[9]
Lu X, Schaefer S, Luo J, Ma L, and He Y Low rank matrix approximation for 3d geometry filtering IEEE Trans. Vis. Comput. Graph. 2022 28 4 1835-1847
[10]
Li X, Zhu L, Fu CW, and Heng PA Non-local low-rank normal filtering for mesh denoising Comput. Graph. Forum 2018 37 7 155-166
[11]
Yaz, I.O., Loriot, S.: Triangulated surface mesh segmentation. In: CGAL User and Reference Manual (2022). https://doc.cgal.org/5.4.1/Manual/packages.html#PkgSurfaceMeshSegmentation
[12]
Grzeczkowicz G and Vallet B Semantic segmentation of urban textured meshes through point sampling ISPRS Ann. Photogram., Remote Sens. Spat. Inf. Sci. 2022 2 177-184
[13]
Hu, Z., Bai, X., Shang, J., Zhang, R., Dong, J., Wang, X., Sun, G., Fu, H., Tai, C.L.: Vmnet: voxel-mesh network for geodesic-aware 3d semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15488–15498 (2021)
[14]
Lian, J., Li, H., Li, N., Cai, Q.: An adaptive mesh segmentation via iterative K-means clustering. In: Proceedings of 2021 Chinese Intelligent Systems Conference, pp. 193–201. Springer Singapore, Singapore (2022)
[15]
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: ACM SIGGRAPH 2004 Papers, pp. 905–914 (2004)
[16]
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, and Süsstrunk S Slic superpixels compared to state-of-the-art superpixel methods IEEE Trans. Pattern Anal. Mach. Intell. 2012 34 11 2274-2282
[17]
Simari P, Picciau G, and De Floriani L Fast and scalable mesh superfacets Comput. Graph. Forum 2014 33 7 181-190
[18]
Comaniciu D and Meer P Mean shift: a robust approach toward feature space analysis IEEE Trans. Pattern Anal. Mach. Intell. 2002 24 5 603-619
[19]
Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by medoidshifts. In: 2007 11th IEEE International Conference on Computer Vision, pp. 1–8 (2007).
[20]
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Computer Vision – ECCV 2008, pp. 705–718. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)
[21]
Katz S and Tal A Hierarchical mesh decomposition using fuzzy clustering and cuts ACM Trans. Graph. (TOG) 2003 22 3 954-961
[22]
Attene M, Falcidieno B, and Spagnuolo M Hierarchical mesh segmentation based on fitting primitives Vis. Comput. 2006 22 3 181-193
[23]
Lai, Y.K., Hu, S.M., Martin, R.R., Rosin, P.L.: Fast mesh segmentation using random walks. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, pp. 183–191 (2008)
[24]
Golovinskiy, A., Funkhouser, T.: Randomized cuts for 3d mesh analysis. In: ACM SIGGRAPH Asia 2008 papers, pp. 1–12 (2008)
[25]
Shapira L, Shamir A, and Cohen-Or D Consistent mesh partitioning and skeletonisation using the shape diameter function Vis. Comput. 2008 24 4 249
[26]
Zheng Y, Tai CL, and Au OKC Dot scissor: a single-click interface for mesh segmentation IEEE Trans. Vis. Comput. Graph. 2011 18 8 1304-1312
[27]
Lee Y, Lee S, Shamir A, Cohen-Or D, and Seidel HP Mesh scissoring with minima rule and part salience Comput. Aided Geometr. Des. 2005 22 5 444-465
[28]
Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3d mesh segmentation and labeling. In: ACM SIGGRAPH 2010 papers, pp. 1–12 (2010)
[29]
Liu CM, Luan WN, Fu RH, Pang HB, and Li YH Attention-embedding mesh saliency Vis. Comput. 2022 39 5 1783-1795
[30]
Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, and Garcia-Rodriguez J A survey on deep learning techniques for image and video semantic segmentation Appl. Soft Comput. 2018 70 41-65
[31]
Vollmer J, Mencl R, and Müller H Improved Laplacian smoothing of noisy surface meshes Comput. Graph. Forum 1999 18 3 131-138
[32]
Field DA Laplacian smoothing and Delaunay triangulations Commun. Appl. Numer. Methods 1988 4 6 709-712
[33]
Liu X, Bao H, Shum HY, and Peng Q A novel volume constrained smoothing method for meshes Graph. Models 2002 64 3–4 169-182
[34]
Kim B and Rossignac J Geofilter: Geometric selection of mesh filter parameters Comput. Graph. Forum 2005 24 3 295-302
[35]
Nehab D, Rusinkiewicz S, Davis J, and Ramamoorthi R Efficiently combining positions and normals for precise 3d geometry ACM Trans. Graph. 2005 24 3 536-543
[36]
Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: Proceedings of GRAPHITE’06, pp. 381–389 (2006)
[37]
Su, Z.X., Wang, H., Cao, J.J.: Mesh denoising based on differential coordinates. In: Proc. of IEEE Int’l Conf. on Shape Modeling and Applications 2009, pp. 1–6 (2009)
[38]
Lee, K.W., Wang, W.P.: Feature-preserving mesh denoising via bilateral normal filtering. In: Proc. of Int’l Conf. on Computer Aided Design and Computer Graphics (2005)
[39]
Chen, S., Wang, J., Pan, W., Gao, S., Wang, M., Lu, X.: Towards uniform point distribution in feature-preserving point cloud filtering. arXiv:2201.01503 (2022)
[40]
Wei M, Yu J, Pang W, Wang J, Qin J, Liu L, and Heng P Bi-normal filtering for mesh denoising Vis. Comput. Graph., IEEE Trans. 2015 21 1 43-55
[41]
Fan, H., Yu, Y., Peng, Q.: Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. Comput. Graph. 16(2), 312–324 (2010)
[42]
Bian Z and Tong R Feature-preserving mesh denoising based on vertices classification Comput. Aided Geometr. Des. 2011 28 1 50-64
[43]
Wang J, Zhang X, and Yu Z A cascaded approach for feature-preserving surface mesh denoising Comput.-Aided Des. 2012 44 7 597-610
[44]
Zhu L, Wei M, Yu J, Wang W, Qin J, and Heng PA Coarse-to-fine normal filtering for feature-preserving mesh denoising based on isotropic subneighborhoods Comput. Graph. Forum 2013 32 7 371-380
[45]
Wang, J., Yu, Z.: A novel method for surface mesh smoothing: applications in biomedical modeling. In: Proceedings of the 18th International Meshing Roundtable, IMR 2009, October 25–28, 2009, Salt Lake City, UT, USA, pp. 195–210 (2009)
[46]
Wei M, Liang L, Pang WM, Wang J, Li W, and Wu H Tensor voting guided mesh denoising IEEE Trans. Autom. Sci. Eng. 2017 14 2 931-945
[47]
Lu X, Deng Z, and Chen W A robust scheme for feature-preserving mesh denoising IEEE Trans. Vis. Comput. Graph. 2016 22 3 1181-1194
[48]
Lu X, Chen W, and Schaefer S Robust mesh denoising via vertex pre-filtering and 1-median normal filtering Comput. Aided Geometr. Des. 2017 54 49-60
[49]
He L and Schaefer S Mesh denoising via l0 minimization ACM Trans. Graph 2013 32 4 64:1-64:8
[50]
Zhao Y, Qin H, Zeng X, Xu J, and Dong J Robust and effective mesh denoising using L0 sparse regularization Comput.-Aided Des. 2018 101 82-97
[51]
Pan W, Lu X, Gong Y, Tang W, Liu J, He Y, and Qiu G Hlo: half-kernel Laplacian operator for surface smoothing Comput.-Aided Des. 2020 121
[52]
Vieira M and Shimada K Surface mesh segmentation and smooth surface extraction through region growing Comput. Aided Geometr. Des. 2005 22 8 771-792
[53]
Huang H and Ascher U Surface mesh smoothing, regularization, and feature detection SIAM J. Sci. Comput. 2008 31 1 74-93
[54]
Legrand H, Thiery JM, and Boubekeur T Filtered quadrics for high-speed geometry smoothing and clustering Comput. Graph. Forum 2019 38 1 663-677
[55]
Wang, C., Liu, Z., Liu, L.: Feature-preserving Mumford-Shah mesh processing via nonsmooth nonconvex regularization. Comput. Graph. 106, 222–236 (2022).
[56]
Liu Z, Li Y, Wang W, Liu L, and Chen R Mesh total generalized variation for denoising IEEE Trans. Vis. Comput. Graph. 2021 28 12 4418-4433
[57]
Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23(3), 905–914 (2004)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image The Visual Computer: International Journal of Computer Graphics
The Visual Computer: International Journal of Computer Graphics  Volume 40, Issue 9
Sep 2024
794 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 29 November 2023
Accepted: 29 October 2023

Author Tags

  1. Mesh denoising
  2. 3D Vision
  3. 3D Processing

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Sep 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media