Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Stylistic scene enhancement GAN: mixed stylistic enhancement generation for 3D indoor scenes

Published: 01 June 2019 Publication History

Abstract

In this paper, we present stylistic scene enhancement GAN, SSE-GAN, a conditional Wasserstein GAN-based approach to automatic generation of mixed stylistic enhancements for 3D indoor scenes. An enhancement indicates factors that can influence the style of an indoor scene such as furniture colors and occurrence of small objects. To facilitate network training, we propose a novel enhancement feature encoding method, which represents an enhancement by a multi-one-hot vector, and effectively accommodates different enhancement factors. A Gumbel-Softmax module is introduced in the generator network to enable the generation of high fidelity enhancement features that can better confuse the discriminator. Experiments show that our approach is superior to the other baseline methods and successfully models the relationship between the style distribution and scene enhancements. Thus, although only trained with a dataset of room images in single styles, the trained generator can generate mixed stylistic enhancements by specifying multiple styles as the condition. Our approach is the first to apply a Gumbel-Softmax module in conditional Wasserstein GANs, as well as the first to explore the application of GAN-based models in the scene enhancement field.

References

[1]
Trimble 3D warehouse (2019). URL https://3dwarehouse.sketchup.com/. Accessed 15 Sept 2018
[2]
Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. arXiv preprint arXiv:1611.08974 (2016)
[3]
Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for indoor scene synthesis. ACM Trans. Graph. (TOG) 37(4), 70:1---70:14 (2018)
[4]
Chen, G., Li, G., Nie, Y., Xian, C., Mao, A.: Stylistic indoor colour design via Bayesian network. Comput. Graph. 60, 34---45 (2016)
[5]
Chen, K., Xu, K., Yu, Y., Wang, T.Y., Hu, S.M.: Magic decorator: automatic material suggestion for indoor digital scenes. ACM Trans. Graph. (TOG) 34(6), 232:1---232:11 (2015)
[6]
Zhang, S., Han, Z., Martin, R.R., Zhang, H.: Semantic 3D indoor scene enhancement using guide words. Vis. Comput. 33(6---8), 925---935 (2017)
[7]
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
[8]
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)
[9]
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NIPS, 5767---5777 (2017)
[10]
Chen, X., Li, J., Li, Q., Gao, B., Zou, D., Zhao, Q.: Image2scene: transforming style of 3D room. In: Proceedings of the ACM International Conference on Multimedia, 321---330 (2015)
[11]
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, 2672---2680 (2014)
[12]
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
[13]
Chen, Y., Lai, Y.K., Liu, Y.J.: CartoonGAN: generative adversarial networks for photo cartoonization. In: IEEE CVPR, 9465---9474 (2018)
[14]
Wu, H., Zheng, S., Zhang, J., Huang, K.: GP-GAN: Towards realistic high-resolution image blending. arXiv preprint arXiv:1703.07195 (2017)
[15]
Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS, pp. 82---90 (2016)
[16]
Liu, J., Yu, F., Funkhouser, T.: Interactive 3D modeling with a generative adversarial network. In: International Conference on 3D Vision (3DV), 126---134. IEEE (2017)
[17]
Chen, K., Choy, C.B., Savva, M., Chang, A.X., Funkhouser, T., Savarese, S.: Text2Shape: Generating shapes from natural language by learning joint embeddings. arXiv preprint arXiv:1803.08495 (2018)
[18]
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)
[19]
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE CVPR, 5967---5976 (2017)
[20]
Donahue, C., McAuley, J., Puckette, M.: Adversarial audio synthesis. arXiv preprint arXiv:1802.04208 (2018)
[21]
Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)
[22]
Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)
[23]
Camino, R., Hammerschmidt, C., State, R.: Generating multi-categorical samples with generative adversarial networks. arXiv preprint arXiv:1807.01202 (2018)
[24]
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)
[25]
Gumbel, E.J.: Statistical theory of extreme values and some practical applications. NBS Applied Mathematics Series 33, (1954)
[26]
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014)
[27]
Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K.: An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint arXiv:1806.07755 (2018)
[28]
Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. arXiv preprint arXiv:1610.06545 (2016)
[29]
Bounliphone, W., Belilovsky, E., Blaschko, M.B., Antonoglou, I., Gretton, A.: A test of relative similarity for model selection in generative models. arXiv preprint arXiv:1511.04581 (2015)
[30]
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265---294 (1978)
[31]
Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223---232 (2003)
[32]
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383---1392 (2009)
[33]
Zhang, Z., Yang, Z., Ma, C., Luo, L., Huth, A., Vouga, E., Huang, Q.: Deep generative modeling for scene synthesis via hybrid representations. arXiv preprint arXiv:1808.02084 (2018)
[34]
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Cited By

View all
  • (2024)Counterfactual Explanation for Fairness in RecommendationACM Transactions on Information Systems10.1145/364367042:4(1-30)Online publication date: 29-Jan-2024
  • (2024)A Dataset and Benchmark for 3D Scene Plausibility AssessmentIEEE Transactions on Multimedia10.1109/TMM.2024.335345626(6529-6541)Online publication date: 12-Jan-2024
  • (2024)Reinforced Path Reasoning for Counterfactual Explainable RecommendationIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.335407736:7(3443-3459)Online publication date: 15-Jan-2024
  • Show More Cited By

Index Terms

  1. Stylistic scene enhancement GAN: mixed stylistic enhancement generation for 3D indoor scenes
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image The Visual Computer: International Journal of Computer Graphics
        The Visual Computer: International Journal of Computer Graphics  Volume 35, Issue 6-8
        June 2019
        415 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 June 2019

        Author Tags

        1. 3D indoor scenes
        2. Conditional generative adversarial nets
        3. Gumbel-Softmax
        4. Interior design
        5. Multi-one-hot
        6. Scene enhancement

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 29 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Counterfactual Explanation for Fairness in RecommendationACM Transactions on Information Systems10.1145/364367042:4(1-30)Online publication date: 29-Jan-2024
        • (2024)A Dataset and Benchmark for 3D Scene Plausibility AssessmentIEEE Transactions on Multimedia10.1109/TMM.2024.335345626(6529-6541)Online publication date: 12-Jan-2024
        • (2024)Reinforced Path Reasoning for Counterfactual Explainable RecommendationIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.335407736:7(3443-3459)Online publication date: 15-Jan-2024
        • (2024)Automated detailing of exterior walls using NADIAAdvanced Engineering Informatics10.1016/j.aei.2024.10253261:COnline publication date: 1-Aug-2024
        • (2024)CVAE-LAYOUT: automatic furniture layout with constraintsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03204-240:11(7731-7745)Online publication date: 1-Nov-2024
        • (2024)Real-scene-constrained virtual scene layout synthesis for mixed realityThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03167-440:9(6319-6339)Online publication date: 1-Sep-2024
        • (2023)Constrained Off-policy Learning over Heterogeneous Information for Fairness-aware RecommendationACM Transactions on Recommender Systems10.1145/36291722:4(1-27)Online publication date: 26-Oct-2023
        • (2023)Causal Disentanglement for Semantic-Aware Intent Learning in RecommendationIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2022.315980235:10(9836-9849)Online publication date: 1-Oct-2023
        • (2023)Unsupervised style-guided cross-domain adaptation for few-shot stylized face translationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-022-02719-439:12(6167-6181)Online publication date: 1-Dec-2023
        • (2023)Swin-GAN: generative adversarial network based on shifted windows transformer architecture for image generationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-022-02714-939:12(6085-6095)Online publication date: 1-Dec-2023
        • Show More Cited By

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media