Nothing Special   »   [go: up one dir, main page]

skip to main content
article

TimeCluster: dimension reduction applied to temporal data for visual analytics

Published: 01 June 2019 Publication History

Abstract

There is a need for solutions which assist users to understand long time-series data by observing its changes over time, finding repeated patterns, detecting outliers, and effectively labeling data instances. Although these tasks are quite distinct and are usually tackled separately, we present an interactive visual analytics system and approach that can address these issues in a single system. It enables users to visualize, understand and explore univariate or multivariate long time-series data in one image using a connected scatter plot. It supports interactive analysis and exploration for pattern discovery and outlier detection. Different dimensionality reduction techniques are used and compared in our system. Because of its power of extracting features, deep learning is used for multivariate time-series along with 2D reduction techniques for rapid and easy interpretation and interaction with large amount of time-series data. We deploy our system with different time-series datasets and report two real-world case studies that are used to evaluate our system.

References

[1]
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265---283 (2016)
[2]
Abdelhameed, A.M., Daoud, H.G., Bayoumi, M.: Epileptic seizure detection using deep convolutional autoencoder. In: 2018 IEEE International Workshop on Signal Processing Systems (SiPS), pp. 223---228 (2018)
[3]
Albers, D., Correll, M., Gleicher, M.: Task-driven evaluation of aggregation in time series visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI Conference, pp. 551---560 (2014)
[4]
Ali, M., Jones, M., Xie, X., Williams, M.: Towards visual exploration of large temporal datasets. In: 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA), pp. 1---9 (2018)
[5]
Alsallakh, B., Bögl, M., Gschwandtner, T., Miksch, S., Esmael, B., Arnaout, A., Thonhauser, G., Zöllner, P.: A visual analytics approach to segmenting and labeling multivariate time series data. In: EuroVis Workshop on Visual Analytics, pp. 31---35. The Eurographics Association (2014)
[6]
Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I.W.H., Ng, L.G., Ginhoux, F., Newell, E.W.: Dimensionality reduction for visualizing single-cell data using umap. Nat. Biotechnol. 37, 38---44 (2019)
[7]
Bernard, J., Hutter, M., Zeppelzauer, M., Fellner, D.W., Sedlmair, M.: Comparing visual-interactive labeling with active learning: an experimental study. IEEE Trans. Vis. Comput. Graph. 24, 298---308 (2018)
[8]
Bernard, J., Zeppelzauer, M., Sedlmair, M., Aigner, W.: Vial: a unified process for visual interactive labeling. Vis. Comput. 34, 1189---1207 (2018)
[9]
Bidder, O.R., Walker, J.S., Jones, M.W., Holton, M.D., Urge, P., Scantlebury, D.M., Marks, N.J., Magowan, E.A., Maguire, I.E., Wilson, R.P.: Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. 3, 23 (2015)
[10]
Brunker, A.S., Nguyen, Q.V., Maeder, A.J., Tague, R., Kolt, G.S., Savage, T.N., Vandelanotte, C., Duncan, M.J., Caperchione, C.M. Rosenkranz, R.R., Van Itallie, A., Mummery, W.K.: A time-based visualization for web user classification in social networks. In: Proceedings of the 7th International Symposium on Visual Information Communication and Interaction, pp. 98:98---98:105 (2014)
[11]
Buono, P., Aris, A., Plaisant, C., Khella, A., Shneiderman, B.: Interactive pattern search in time series. In: Proceedings of SPIE, vol. 5669 (2005)
[12]
Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei J, Tseng VS, Cao L, Motoda H, Xu G (eds) Advances in Knowledge Discovery and Data Mining, . Springer, Berlin, Heidelberg pp. 160---172 (2013).
[13]
Cavallo, M., Demiralp, Ç.: Clustrophile 2: guided visual clustering analysis. IEEE Trans. Vis. Comput. Graph. 25(1), 267---276 (2019)
[14]
Cheung, C.M., Goyal, P., Prasanna, V.K., Tehrani, A.S.: Oreonet: Deep convolutional network for oil reservoir optimization. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1277---1282 (2017)
[15]
Chollet, F., et al.: Keras: The python deep learning library (2015). https://keras.io. Accessed 9 Feb 2019
[16]
Correll, M., Albers, D., Franconeri, S., Gleicher, M.: Comparing averages in time series data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1095---1104 (2012)
[17]
Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Comparing similarity perception in time series visualizations. IEEE Trans. Vis. Comput. Graph. 25, 523---533 (2019)
[18]
Grundy, E., Jones, M.W., Laramee, R.S., Wilson, R.P., Shepard, E.L.: Visualisation of sensor data from animal movement. Comput. Graph. Forum 28(3), 815---822 (2009)
[19]
Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy EM (eds) Neural Information Processing. Springer, Cham, pp. 373---382 (2017).
[20]
Hensman, J., Lawrence, N.D., Rattray, M.: Hierarchical bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinform. 14, 252 (2013)
[21]
Huang, H., Hu, X., Zhao, Y., Makkie, M., Dong, Q., Zhao, S., Guo, L., Liu, T.: Modeling task fmri data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551---1561 (2018)
[22]
Javed, W., McDonnel, B., Elmqvist, N.: Graphical perception of multiple time series. IEEE Trans. Vis. Comput. Graph. 16(6), 927---934 (2010)
[23]
Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering the information age: solving problems with visual analytics. Eurographics Association (2010)
[24]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). CoRR arXiv:1412.6980
[25]
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097---1105 (2012)
[26]
Legg, P.A., Chung, D.H.S., Parry, M.L., Bown, R., Jones, M.W., Griffiths, I.W., Chen, M.: Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop. IEEE Trans. Vis. Comput. Graph. 19(12), 2109---2118 (2013)
[27]
Lesch, R.H., Caillé, Y., Lowe, D.: Component analysis in financial time series. In: Computational Intelligence for Financial Engineering, 1999. In: (CIFEr) Proceedings of the IEEE/IAFE 1999 Conference on, pp. 183---190 (1999)
[28]
Li, J., Chen, S., Zhang, K., Andrienko, G., Andrienko, N.: Cope: Interactive exploration of co-occurrence patterns in spatial time series. IEEE Trans. Vis. Comput. Graph. 1---14 (2018).
[29]
Li, Y., Lin, J., Oates, T.: Visualizing variable-length time series motifs. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 895---906 (2012)
[30]
Lin, J., Keogh, E.J., Lonardi, S.: Visualizing and discovering non-trivial patterns in large time series databases. Inf. Vis. 4(2), 61---82 (2005)
[31]
Lonardi, J., Patel, P.: Finding motifs in time series. In: Proceedings of the 2nd Workshop on Temporal Data Mining, pp. 53---68 (2002)
[32]
Martinez-Murcia, F.J., Ortiz, A., Gorriz, J.M., Ramirez, J., Castillo-Barnes, D., Salas-Gonzalez, D., Segovia, F.: Deep convolutional autoencoders vs PCA in a highly-unbalanced Parkinson's disease dataset: a datscan study. In: International Joint Conference SOCO'18-CISIS'18-ICEUTE'18, pp. 47---56 (2019)
[33]
McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction (2018). arXiv e-prints, page arXiv:1802.03426
[34]
Mohseni-Kabir, A., Wu, V., Chernova, S., Rich, C.: What's in a primitive? Identifying reusable motion trajectories in narrated demonstrations. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 267---272 (2016)
[35]
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807---814 (2010)
[36]
Nhon, D.T., Anand, A., Wilkinson, L.: Timeseer: scagnostics for high-dimensional time series. IEEE Trans. Vis. Comput. Graph. 19(3), 470---483 (2013)
[37]
Ordóñez, P., DesJardins, M., Feltes, C., Lehmann, C.U., Fackler, J.C.: Visualizing multivariate time series data to detect specific medical conditions. AMIA, pp. 530---534 (2008)
[38]
Perin, C., Vernier, F., Fekete, J.-D.; Interactive horizon graphs: Improving the compact visualization of multiple time series. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3217---3226 (2013)
[39]
Rohlig, M., Luboschik, M., Schumann, H., Bögl, M., Alsallakh, B., Miksch, S.: Analyzing parameter influence on time-series segmentation and labeling. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 269---270 (2014)
[40]
Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Artificial Neural Networks--ICANN 2010, pp. 92---101 (2010)
[41]
Sedlmair, M., Munzner, T., Tory, M.: Empirical guidance on scatterplot and dimension reduction technique choices. IEEE Trans. Vis. Comput. Graph. 19(12), 2634---2643 (2013)
[42]
Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C., Frankenstein, S., Lerner, M.: Grammarviz 2.0: a tool for grammar-based pattern discovery in time series. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 468---472 (2014)
[43]
Shepard, E.L., Wilson, R.P., Quintana, F., Laich, A.G., Liebsch, N., Albareda, D.A., Halsey, L.G., Gleiss, A., Morgan, D.T., Myers, A.E., et al.: Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 10, 47---60 (2008)
[44]
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336---343 (1996)
[45]
Singh, S., Zhang, S., Pruett, W.A., Hester, R.: Ensemble traces: interactive visualization of ensemble multivariate time series data. Electron. Imaging 1---9 (2016).
[46]
Singhal, A., Seborg, D.E.: Clustering multivariate time-series data. J. Chemom. 19(8), 427---438 (2005)
[47]
Swihart, B.J., Caffo, B., James, B.D., Strand, M., Schwartz, B.S., Punjabi, N.M.: Lasagna plots: a saucy alternative to spaghetti plots. Epidemiology 21(5), 621---5 (2010)
[48]
van den Elzen, S., Holten, D., Blaas, J., van Wijk, J.J.: Reducing snapshots to points: a visual analytics approach to dynamic network exploration. IEEE Trans. Vis. Comput. Graph. 22(1), 1---10 (2016)
[49]
van der Maaten, L., Hinton, G.E.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579---2605 (2008)
[50]
van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1---41), 66---71 (2009)
[51]
van Unen, V., Li, N., Molendijk, I., Temurhan, M., Höllt, T., van der Meulen-de Jong, A.E., Verspaget, H.W., Mearin, M.L., Mulder, C.J.J., van Bergen, J., Lelieveldt, B.P.F., Koning, F.: Mass cytometry of the human mucosal immune system identifies tissue- and disease-associated immune subsets. Immunity 44(5), 1227---1239 (2016)
[52]
Walker, J.S., Borgo, R., Jones, M.W.: Timenotes: a study on effective chart visualization and interaction techniques for time-series data. IEEE Trans. Vis. Comput. Graph. 22(1), 549---558 (2016)
[53]
Walker, J.S., Jones, M.W., Laramee, R.S., Bidder, O.R., Williams, H.J., Scott, R., Shepard, E.L.C., Wilson, R.P.: Timeclassifier: a visual analytic system for the classification of multi-dimensional time series data. Vis. Comput. 31(6---8), 1067---1078 (2015)
[54]
Walker, J.S., Jones, M.W., Laramee, R.S., Holton, M.D., Shepard, E.L.C., Williams, H.J., Scantlebury, D.M., Marks, N.J., Magowan, E.A., Maguire, I.E., Bidder, O.R., Virgilio, A.D., Wilson, R.P.: Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in daily diary tags. Mov. Ecol. 3, 29 (2015)
[55]
Whited, L., Graham, D.: Abnormal respirations (2018). https://www.ncbi.nlm.nih.gov/books/NBK470309/. Accessed 9 Feb 2019
[56]
Wilson, W., Birkin, P., Aickelin, U.: Motif detection inspired by immune memory. In: Artificial Immune Systems, pp. 276---287 (2007)
[57]
Wilson, W., Birkin, P., Aickelin, U.: The motif tracking algorithm. Int. J. Autom. Comput. 5(1), 32---44 (2008)
[58]
Xie, C., Xu, W., Mueller, K.: A visual analytics framework for the detection of anomalous call stack trees in high performance computing applications. IEEE Trans. Vis. Comput. Graph. 25(1), 215---224 (2019)
[59]
Yang, K., Shahabi, C.: A PCA-based similarity measure for multivariate time series. In: Proceedings of the 2nd ACM International Workshop on Multimedia Databases, pp. 65---74 (2004)
[60]
Yang, K., Shahabi, C.: On the stationarity of multivariate time series for correlation-based data analysis. In: 5th IEEE International Conference on Data Mining (ICDM'05), pp. 805---808 (2005)
[61]
Yuan, G., Drost, N.A., McIvor, R.A.: Respiratory rate and breathing pattern. McMaster Univ. Med. J. 10, 23---25 (2013)

Cited By

View all

Index Terms

  1. TimeCluster: dimension reduction applied to temporal data for visual analytics
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image The Visual Computer: International Journal of Computer Graphics
        The Visual Computer: International Journal of Computer Graphics  Volume 35, Issue 6-8
        June 2019
        415 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 June 2019

        Author Tags

        1. 2D projection
        2. Dimension reduction
        3. Labeling
        4. Outliers
        5. Repeated patterns
        6. Sliding window
        7. Time-series data
        8. Time-series graph
        9. Visual analytics

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 16 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)Salient object detection in HSI using MEV-SFS and saliency optimizationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03324-341:1(271-280)Online publication date: 1-Jan-2025
        • (2024)A Parallel Framework for Streaming Dimensionality ReductionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332651530:1(142-152)Online publication date: 1-Jan-2024
        • (2024)Machine learning for administrative health recordsArtificial Intelligence in Medicine10.1016/j.artmed.2023.102642144:COnline publication date: 5-Jan-2024
        • (2024)Comparing dimensionality reduction techniques for visual analysis of the LSTM hidden activity on multi-dimensional time series modelingThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03235-940:11(8243-8261)Online publication date: 1-Nov-2024
        • (2024)PlayNet: real-time handball play classification with Kalman embeddings and neural networksThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-02972-140:4(2695-2711)Online publication date: 1-Apr-2024
        • (2023)Visualizing Runtime Evolution Paths in a Multidimensional Space (Work In Progress Paper)Companion of the 2023 ACM/SPEC International Conference on Performance Engineering10.1145/3578245.3585031(33-38)Online publication date: 15-Apr-2023
        • (2023)DeepVATSKnowledge-Based Systems10.1016/j.knosys.2023.110793277:COnline publication date: 9-Oct-2023
        • (2023)Uncovering Strategies and Commitment Through Machine Learning System IntrospectionSN Computer Science10.1007/s42979-023-01747-84:4Online publication date: 11-Apr-2023
        • (2022)Joint t-SNE for Comparable Projections of Multiple High-Dimensional DatasetsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311476528:1(623-632)Online publication date: 1-Jan-2022
        • (2022)A survey of visual analytics for Explainable Artificial Intelligence methodsComputers and Graphics10.1016/j.cag.2021.09.002102:C(502-520)Online publication date: 1-Feb-2022
        • Show More Cited By

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media