Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Vision-based navigation of an unmanned surface vehicle with object detection and tracking abilities

Published: 01 January 2018 Publication History

Abstract

The paper discusses autocalibration, object detection, and object tracking for unmanned surface vehicles. Input data are recorded with a wide-baseline stereo vision system providing accuracy for distance estimations. The paper reports about followed ways and novel contributions for ensuring a working system solution. Automatic self-calibration is used for the wide-baseline stereo vision system. Robust sea surface estimation and the detection of the horizon support the understanding of the given scene environment. Long-range (i.e. up to 500 m) object detection and tracking are supported by the used wide-baseline stereo system. The paper informs about the complete system design, informs about applied or designed methods, and also about experiments which verify that the system achieved an operational state.

References

[1]
Bloisi, D., Iocchi, L., Fiorini, M., Graziano, G.: Camera based target recognition for maritime awareness. In: Proceedings of the International Conference on Information Fusion, pp. 1982---1987 (2012)
[2]
Bouget, J.-Y.: Camera Calibration Toolbox for Matlab (2017). www.vision.caltech.edu/bouguetj/calib_doc/
[3]
Dataset of KITTI Vision Benchmark Suite 2015 (2017). www.cvlibs.net/datasets/kitti/
[4]
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381---395 (1981)
[5]
Fefilatyev, S., Golgof, D.: Detection and tracking of marine vehicles in video. In: Proceedings of the International Conference on Pattern Recognition, pp. 1---4 (2008)
[6]
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)
[7]
Heidarsson, H.K., Sukhatme, G.S.: Obstacle detection from overhead imagery using self-supervised learning for autonomous surface vehicles. In: Proceeding of International Conference on Intelligent Robots and Systems, pp. 25---30 (2011)
[8]
Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328---341 (2008)
[9]
Huntsberger, T., Aghazarian, H., Howard, A., Trotz, D.: Stereo vision-based navigation for autonomous surface vessels. J. Field Robot. 28, 3---18 (2011)
[10]
Klette, R.: Concise Computer Vision. Springer, London (2014)
[11]
Konolige, K.: Small vision systems: hardware and implementation. In: Proceeding of the International Symposium on Robotics Research (1997)
[12]
Kristan, M., Perš, J., Suliă?, V., Kovaă?iă?, S.: A graphical model for rapid obstacle image-map estimation from unmanned surface vehicles. In: Proceedings of ACCV (2014)
[13]
Lienhart, R., Maydt, J.: An extended set of Haar-like features for rapid object detection. In: Proceedings of ICIP, pp. 900---903 (2002)
[14]
Muñoz-Salinas, R.: A Bayesian plan-view map based approach for multiple-person detection and tracking. Pattern Recognit. 41, 3665---3676 (2008)
[15]
Pavania, S.-K., Delgadoa, D., Frangia, A.F.: Haar-like features with optimally weighted rectangles for rapid object detection. Pattern Recognit. 43, 160---172 (2010)
[16]
Shin, B.-S., Tao, J., Klette, R.: A superparticle filter for lane detection. Pattern Recognit. 48, 3333---3345 (2015)
[17]
Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of CVPR, pp. 511---518 (2001)
[18]
Wang, H., Wei, Z., Wang, S., Ow, C., Ho, K., Feng, B.: A vision-based obstacle detection system for unmanned surface vehicle. In: IEEE Conference on Robotics, Automation and Mechatronics, pp. 364---369 (2011)
[19]
Wang, H., Wei, Z., Ow, C., Ho, K., Feng, B., Huang, J.: Improvement in real-time obstacle detection system for USV. In: Proceedings of the International Conference on Control Automation Robotics Vision, pp. 1317---1322 (2012)
[20]
Wang, H., Wei, Z.: Stereovision based obstacle detection system for unmanned surface vehicle. In: Proceedings of the IEEE International Conference on Robotics Biometrics, pp. 917---921 (2013)
[21]
Wang, H., Mou, X., Mou, W., Yuan, S., Ulun, S., Yang, S., Shin, B.-S.: Vision based long range object detection and tracking for unmanned surface vehicle. In: Proceedings of the IEEE International Conference on CIS---RAM, Cambodia (2015)
[22]
Wang, H., Mou, W., Mou, X., Yuan, S., Ulun, S., Yang, S., Shin, B.-S.: An automatic self-calibration approach for wide baseline stereo cameras using sea surface images. Unmanned Syst. 3, 277---290 (2015)
[23]
Xu, Z., Shin, B.-S., Klette, R.: Accurate and robust line segment extraction using minimum entropy with Hough transform. IEEE Trans. Image Process. 24, 813---822 (2015)
[24]
Yan, Y., Shin, B.-S., Mou, X., Mou, W., Wang, H.: Efficient horizon detection on complex sea for sea surveillance. Int. J. Electr. Electron. Data Commun. 3, 49---52 (2015)
[25]
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.: Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of the ECCV, pp. 127---141 (2014)
[26]
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330---1334 (2000)

Cited By

View all
  • (2023)Ship Collision Avoidance Navigation Signal Recognition via Vision Sensing and Machine ForecastingIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.328770924:11(11743-11755)Online publication date: 1-Nov-2023
  • (2022)Optimization of stereo vision baseline and effects of canopy structure, pre-processing and imaging parameters for 3D reconstruction of treesMachine Vision and Applications10.1007/s00138-022-01333-733:6Online publication date: 1-Nov-2022
  • (2021)Maritime moving object localization and detection using global navigation smart radar systemSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-021-05625-425:18(11965-11974)Online publication date: 1-Sep-2021
  1. Vision-based navigation of an unmanned surface vehicle with object detection and tracking abilities

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Machine Vision and Applications
      Machine Vision and Applications  Volume 29, Issue 1
      January 2018
      180 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 January 2018

      Author Tags

      1. Autonomous vehicle
      2. Object detection
      3. Object tracking
      4. Self-calibration
      5. Stereo calibration
      6. Stereo vision
      7. Unmanned surface vehicle

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 16 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Ship Collision Avoidance Navigation Signal Recognition via Vision Sensing and Machine ForecastingIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.328770924:11(11743-11755)Online publication date: 1-Nov-2023
      • (2022)Optimization of stereo vision baseline and effects of canopy structure, pre-processing and imaging parameters for 3D reconstruction of treesMachine Vision and Applications10.1007/s00138-022-01333-733:6Online publication date: 1-Nov-2022
      • (2021)Maritime moving object localization and detection using global navigation smart radar systemSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-021-05625-425:18(11965-11974)Online publication date: 1-Sep-2021

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media