Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Secret-Sharing Schemes for Very Dense Graphs

Published: 01 April 2016 Publication History

Abstract

A secret-sharing scheme realizes a graph if every two vertices connected by an edge can reconstruct the secret while every independent set in the graph does not get any information on the secret. Similar to secret-sharing schemes for general access structures, there are gaps between the known lower bounds and upper bounds on the share size for graphs. Motivated by the question of what makes a graph "hard" for secret-sharing schemes (that is, they require large shares), we study very dense graphs, that is, graphs whose complement contains few edges. We show that if a graph with $$n$$n vertices contains $$\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }$$n2-n1+β edges for some constant $$0 \le \beta <1$$0≤β<1, then there is a scheme realizing the graph with total share size of $$\tilde{O}(n^{5/4+3\beta /4})$$O~(n5/4+3β/4). This should be compared to $$O(n^2/\log (n))$$O(n2/log(n)), the best upper bound known for the total share size in general graphs. Thus, if a graph is "hard," then the graph and its complement should have many edges. We generalize these results to nearly complete $$k$$k-homogeneous access structures for a constant $$k$$k. To complement our results, we prove lower bounds on the total share size for secret-sharing schemes realizing very dense graphs, e.g., for linear secret-sharing schemes, we prove a lower bound of $$\Omega (n^{1+\beta /2})$$Ω(n1+β/2) for a graph with $$\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }$$n2-n1+β edges.

References

[1]
N. Alon. Covering graphs by the minimum number of equivalence relations. Combinatorica, 6(3):201---206, 1986.
[2]
N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, 3rd edition, 2008.
[3]
L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds for monotone span programs. Combinatorica, 19(3):301---319, 1999.
[4]
A. Beimel. Secret-sharing schemes: A survey. In IWCC 2011, volume 6639 of Lecture Notes in Computer Science, pages 11---46, 2011.
[5]
A. Beimel and B. Chor. Universally ideal secret sharing schemes. IEEE Trans. on Information Theory, 40(3):786---794, 1994.
[6]
A. Beimel, A. Gál, and M. Paterson. Lower bounds for monotone span programs. Computational Complexity, 6(1):29---45, 1997. Conference version: FOCS '95.
[7]
A. Beimel, Y. Ishai, R. Kumaresan, and E. Kushilevitz. On the cryptographic complexity of the worst functions. In Y. Lindell, editor, Proc. of the Eleventh Theory of Cryptography Conference--- TCC 2014, volume 8349 of Lecture Notes in Computer Science, pages 317---342. Springer-Verlag, 2014.
[8]
M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non cryptographic fault-tolerant distributed computations. In Proc. of the 20th ACM Symp. on the Theory of Computing, pages 1---10, 1988.
[9]
J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In S. Goldwasser, editor, Advances in Cryptology --- CRYPTO '88, volume 403 of Lecture Notes in Computer Science, pages 27---35. Springer-Verlag, 1990.
[10]
G. R. Blakley. Safeguarding cryptographic keys. In R. E. Merwin, J. T. Zanca, and M. Smith, editors, Proc. of the 1979 AFIPS National Computer Conference, volume 48 of AFIPS Conference proceedings, pages 313---317. AFIPS Press, 1979.
[11]
G. R. Blakley and C. Meadows. The security of ramp schemes. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology --- CRYPTO '84, volume 196 of Lecture Notes in Computer Science, pages 242---268. Springer-Verlag, 1985.
[12]
C. Blundo, A. De Santis, R. de Simone, and U. Vaccaro. Tight bounds on the information rate of secret sharing schemes. Designs, Codes and Cryptography, 11(2):107---122, 1997.
[13]
C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro. On the information rate of secret sharing schemes. Theoretical Computer Science, 154(2):283---306, 1996.
[14]
C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro. Graph decomposition and secret sharing schemes. J. of Cryptology, 8(1):39---64, 1995.
[15]
E. F. Brickell. Some ideal secret sharing schemes. Journal of Combin. Math. and Combin. Comput., 6:105---113, 1989.
[16]
E. F. Brickell and D. M. Davenport. On the classification of ideal secret sharing schemes. J. of Cryptology, 4(73):123---134, 1991.
[17]
S. Bublitz. Decomposition of graphs and monotone formula size of homogeneous functions. Acta Informatica, 23:689---696, 1986.
[18]
R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares for secret sharing schemes. J. of Cryptology, 6(3):157---168, 1993.
[19]
D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols. In Proc. of the 20th ACM Symp. on the Theory of Computing, pages 11---19, 1988.
[20]
B. Chor and E. Kushilevitz. Secret sharing over infinite domains. J. of Cryptology, 6(2):87---96, 1993.
[21]
R. Cramer, I. Damgård, and U. Maurer. General secure multi-party computation from any linear secret-sharing scheme. In B. Preneel, editor, Advances in Cryptology --- EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 316---334. Springer-Verlag, 2000.
[22]
G. Di Crescenzo and C. Galdi. Hypergraph decomposition and secret sharing. Discrete Applied Mathematics, 157(5):928---946, 2009.
[23]
L. Csirmaz. The size of a share must be large. J. of Cryptology, 10(4):223---231, 1997.
[24]
L. Csirmaz. Secret sharing schemes on graphs. Technical Report 2005/059, Cryptology ePrint Archive, 2005. eprint.iacr.org/.
[25]
L. Csirmaz. An impossibility result on graph secret sharing. Designs, Codes and Cryptography, 53(3):195---209, 2009.
[26]
L. Csirmaz, P. Ligeti, and G. Tardos. Erdös-pyber theorem for hypergraphs and secret sharing. Graphs and Combinatorics, 2014.
[27]
L. Csirmaz and G. Tardos. Secret sharing on trees: problem solved. IACR Cryptology ePrint Archive, 2009:71, 2009.
[28]
Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures. In J. Feigenbaum, editor, Advances in Cryptology --- CRYPTO '91, volume 576 of Lecture Notes in Computer Science, pages 457---469. Springer-Verlag, 1992.
[29]
M. van Dijk. On the information rate of perfect secret sharing schemes. Designs, Codes and Cryptography, 6:143---169, 1995.
[30]
P. Erdös and L. Pyber. Covering a graph by complete bipartite graphs. Discrete Mathematics, 170(1-3):249---251, 1997.
[31]
O. Farràs, J. Martí-Farré, and C. Padró. Ideal multipartite secret sharing schemes. J. of Cryptology, 25(1):434---463, 2012.
[32]
A. Gál. A characterization of span program size and improved lower bounds for monotone span programs. In Proc. of the 30th ACM Symp. on the Theory of Computing, pages 429---437, 1998.
[33]
A. Gál and P. Pudlák. A note on monotone complexity and the rank of matrices. Inform. Process. Lett., 87:321---326, 2003.
[34]
V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data. In Proc. of the 13th ACM Conference on Computer and Communications Security, pages 89---98, 2006.
[35]
M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structure. In Proc. of the IEEE Global Telecommunication Conf., Globecom 87, pages 99---102, 1987. Journal version: Multiple assignment scheme for sharing secret. J. of Cryptology, 6(1):15---20, 1993.
[36]
M. Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Structures & Algorithms, 7:157---166, 1995.
[37]
S. Jukna. On set intersection representations of graphs. Journal of Graph Theory, 61:55---75, 2009.
[38]
M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE Structure in Complexity Theory, pages 102---111, 1993.
[39]
E. D. Karnin, J. W. Greene, and M. E. Hellman. On secret sharing systems. IEEE Trans. on Information Theory, 29(1):35---41, 1983.
[40]
J. Kilian and N. Nisan. Private communication, 1990.
[41]
J. Martí-Farré and C. Padró. Secret sharing schemes on sparse homogeneous access structures with rank three. Electr. J. Comb., 11(1), 2004.
[42]
J. Martí-Farré and C. Padró. Secret sharing schemes with three or four minimal qualified subsets. Designs, Codes and Cryptography, 34(1):17---34, 2005.
[43]
J. Martí-Farré and C. Padró. On secret sharing schemes, matroids and polymatroids. Journal of Mathematical Cryptology, 4(2):95---120, 2010.
[44]
Y. Mintz. Information ratios of graph secret-sharing schemes. Master's thesis, Dept. of Computer Science, Ben Gurion University, 2012.
[45]
M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press, 2005.
[46]
M. Naor and A. Wool. Access control and signatures via quorum secret sharing. In 3rd ACM Conf. on Computer and Communications Security, pages 157---167, 1996.
[47]
C. Padró and G. Sáez. Secret sharing schemes with bipartite access structure. IEEE Trans. on Information Theory, 46:2596---2605, 2000.
[48]
C. Padró and G. Sáez. Lower bounds on the information rate of secret sharing schemes with homogeneous access structure. Inf. Process. Lett., 83(6):345---351, 2002.
[49]
J. Salas and A. D. Sokal. Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem. J. Statist. Phys., 86:551---579, 1997.
[50]
A. Shamir. How to share a secret. Communications of the ACM, 22:612---613, 1979.
[51]
B. Shankar, K. Srinathan, and C. Pandu Rangan. Alternative protocols for generalized oblivious transfer. In Proceedings of the 9th International Conference on Distributed Computing and Networking (ICDCN'08), volume 4904 of Lecture Notes in Computer Science, pages 304---309. Springer-Verlag, 2008.
[52]
G. J. Simmons, W. Jackson, and K. M. Martin. The geometry of shared secret schemes. Bulletin of the ICA, 1:71---88, 1991.
[53]
D. R. Stinson. New general lower bounds on the information rate of secret sharing schemes. In E. F. Brickell, editor, Advances in Cryptology --- CRYPTO '92, volume 740 of Lecture Notes in Computer Science, pages 168---182. Springer-Verlag, 1993.
[54]
D. R. Stinson. Decomposition construction for secret sharing schemes. IEEE Trans. on Information Theory, 40(1):118---125, 1994.
[55]
H. Sun and S. Shieh. Secret sharing in graph-based prohibited structures. In INFOCOM '97, pages 718---724, 1997.
[56]
H.-M. Sun, H. Wang, B.-H. Ku, and J. Pieprzyk. Decomposition construction for secret sharing schemes with graph access structures in polynomial time. SIAM J. Discret. Math., 24:617---638, 2010.
[57]
T. Tassa. Generalized oblivious transfer by secret sharing. Des. Codes Cryptography, 58(1):11---21, 2011.
[58]
B. Waters. Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In Proc. of the 14th International Conference on Practice and Theory in Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 53---70. Springer-Verlag, 2011.
[59]
I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Cryptology
Journal of Cryptology  Volume 29, Issue 2
April 2016
248 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2016

Author Tags

  1. Complete bipartite covers
  2. Equivalence covers
  3. Graph access structures
  4. Secret-sharing
  5. Share size

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)One-Out-of-q OT CombinersIEEE Transactions on Information Theory10.1109/TIT.2023.334029470:4(2984-2998)Online publication date: 1-Apr-2024
  • (2024)Information Ratio of Unicyclic GraphsIEEE Transactions on Information Theory10.1109/TIT.2023.332260170:1(722-734)Online publication date: 1-Jan-2024
  • (2024)Evolving Secret Sharing Made ShortAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0941-3_3(69-99)Online publication date: 10-Dec-2024
  • (2023)Succinct Computational Secret SharingProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585127(1553-1566)Online publication date: 2-Jun-2023
  • (2021)Privacy-preserving data splitting: a combinatorial approachDesigns, Codes and Cryptography10.1007/s10623-021-00884-689:7(1735-1756)Online publication date: 1-Jul-2021
  • (2020)On the Power of Amortization in Secret SharingACM Transactions on Computation Theory10.1145/341775612:4(1-21)Online publication date: 30-Sep-2020
  • (2020)Smallest Graphs Achieving the Stinson BoundIEEE Transactions on Information Theory10.1109/TIT.2020.296510266:7(4609-4612)Online publication date: 18-Jun-2020
  • (2020)Study on supply chain strategy based on cost income model and multi-access edge computing under the background of the Internet of ThingsNeural Computing and Applications10.1007/s00521-019-04125-932:19(15357-15368)Online publication date: 1-Oct-2020
  • (2020)The Share Size of Secret-Sharing Schemes for Almost All Access Structures and GraphsTheory of Cryptography10.1007/978-3-030-64381-2_18(499-529)Online publication date: 16-Nov-2020
  • (2019)Local bounds for the optimal information ratio of secret sharing schemesDesigns, Codes and Cryptography10.1007/s10623-018-0529-787:6(1323-1344)Online publication date: 1-Jun-2019
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media