Nothing Special   »   [go: up one dir, main page]

skip to main content
article

On optimal triangular meshes for minimizing the gradient error

Published: 01 December 1991 Publication History

Abstract

Construction of optimal triangular meshes for controlling the errors in gradient estimation for piecewise linear interpolation of data functions in the plane is discussed. Using an appropriate linear coordinate transformation, rigorously optimal meshes for controlling the error in quadratic data functions are constructed. It is shown that the transformation can be generated as a curvilinear coordinate transformation for any C data function with nonsingular Hessian matrix. Using this transformation, a construction of nearly optimal meshes for general data functions is described and the error equilibration properties of these meshes discussed. In particular, it is shown that equilibration of errors is not a sufficient condition for optimality. A comparison of meshes generated under several different criteria is made, and their equilibrating properties illustrated.

References

[1]
Ascher, U., Christiansen, J., Russell, R.D.: A collocation solver for mixed order systems of boundary value problems. Math. Comput.33, 659---679 (1979)
[2]
Babuška, I., Rheinboldt, W.C.: Analysis of optimal finite-element meshes in ¿1. Math. Comput.33, 435---463 (1979)
[3]
Bank, R.E.: PLTMG: A Software Package for Solving Elliptic Partial Differential Equations. Society of Industrial and Applied Mathematics, Philadelphia (1990)
[4]
Char, B.W., Geddes, K.O., Gonnet, G.H., Watt, S.M.: Maple User's Guide, WATCOM Publications Limited, Waterloo, Ontario, 1985
[5]
D'Azevedo, E.F.: Optimal triangular mesh generation by coordinate transformation. SIAM J. Sci. Stat. Comput.12, No. 4 (to appear)
[6]
De Boor, C.: Good approximation by splines with variable knots. In Meir, A., Sharma, A. (eds.) Spline Functions and Approximation Theory, pp. 57---71. Berlin Heidelberg New York: Springer, 1973
[7]
Delfour, M., Payre, G., Zolesio, J.-P.: An optimal triangulation for second-order elliptic problems. Comp. Meth. Appl. Mech. Engin.50, 231---261 (1985)
[8]
Diaz, A.R., Kikuchi, N., Taylor, J.E.: A method of grid optimization for the finite element method. Comp. Meth. Appl. Mech. Engin.41, 29---45 (1983)
[9]
Kurata, M.: Numerical Analysis for Semiconductor Devices. Lexington, Mass. Lexington Books 1982
[10]
McGirr, M.B., Corderoy, D.J.H., Hellier, A.K., Easterbrook, P.C.: The performance of an automatic, self-adaptive finite element technique. In: Noye, J., Fletcher, C. (eds.) Computational Techniques & Applications: CTAC-83, pp. 236---240. Amsterdam: Elsevier 1984
[11]
Nadler, E.: Piecewise linear bestL2 approximation on triangulations. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory V, pp. 499---502. Proceedings of the Fifth International Symposium on Approximation Theory held at Texas A & M University on January 13---17, 1986. Boston: Academic Press 1986
[12]
Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comput. Phys.72, 449---466 (1987)
[13]
Pironneau, O.: Finite Element Methods for Fluids. New York: Wiley 1989
[14]
Reid, J.K.: FORTRAN subroutines for the solutions of Laplace's equation over a general routine in two dimensions. Tech. Rep. TP.422, Harwell (1970)
[15]
Reid, J.K.: On the construction and convergence of a finite-element solution of Laplace's equation. J. Inst. Maths. Applics.9, 1---13 (1972)
[16]
Rheinboldt, W.C.: On a theory of mesh-refinement process, SIAM J. Numer. Anal.17, 766---788 (1980)
[17]
Sokolnikoff, I.S.: Tensor Analysis. Theory and Applications to Geometry and Mechanics of Continua, second ed. New York: Wiley 1964
[18]
White, Jr., A.B.: On selection of equidistributing meshes for two-point boundary-value problems. SIAM J. Numer. Anal.16, 472---502 (1979)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Numerische Mathematik
Numerische Mathematik  Volume 59, Issue 1
December 1991
838 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 1991

Author Tags

  1. 65D05
  2. 65L05

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)On degenerating finite element tetrahedral partitionsNumerische Mathematik10.1007/s00211-022-01317-9152:2(307-329)Online publication date: 1-Oct-2022
  • (2017)Metric tensor recovery for adaptive meshingMathematics and Computers in Simulation10.1016/j.matcom.2015.02.004139:C(54-66)Online publication date: 1-Sep-2017
  • (2016)A decade of progress on anisotropic mesh adaptation for computational fluid dynamicsComputer-Aided Design10.1016/j.cad.2015.09.00572:C(13-39)Online publication date: 1-Mar-2016
  • (2015)A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structuresJournal of Computational Physics10.1016/j.jcp.2015.01.010285:C(100-110)Online publication date: 15-Mar-2015
  • (2015)The geometry of r-adaptive meshes generated using optimal transport methodsJournal of Computational Physics10.1016/j.jcp.2014.11.007282:C(113-137)Online publication date: 1-Feb-2015
  • (2015)A robust conforming NURBS tessellation for industrial applications based on a mesh generation approachComputer-Aided Design10.1016/j.cad.2014.12.00963:C(26-38)Online publication date: 1-Jun-2015
  • (2014)An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniquesJournal of Computational Physics10.5555/2743142.2743732257:PA(83-101)Online publication date: 15-Jan-2014
  • (2014)Metric tensors for the interpolation error and its gradient in L p normJournal of Computational Physics10.5555/2743139.2743543256:C(543-562)Online publication date: 1-Jan-2014
  • (2010)Anisotropic mesh adaptation for evolving triangulated surfacesEngineering with Computers10.5555/3225288.322557926:4(363-376)Online publication date: 1-Aug-2010
  • (2010)Anisotropic quadrangulationProceedings of the 14th ACM Symposium on Solid and Physical Modeling10.1145/1839778.1839797(137-146)Online publication date: 1-Sep-2010
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media