Nothing Special   »   [go: up one dir, main page]

skip to main content
article

On the completeness and constructiveness of parametric characterizations to vector optimization problems

Published: 01 June 1986 Publication History

Abstract

Motivated by recent reviews of characterizations of optimal solutions to vector optimization problems and by applications to decision support systems, this paper presents a methodological approach to comparing such characterizations. After specifying attributes of constructiveness, alternative classes of characterizations are reviewed. Characterization theorems are quoted or presented in more detail in cases that supplement those given in recent reviews. One of alternative classes of characterizations -- by aspiration levels and order-consistent achievement functions -- is discussed in more detail. An impossibility theorem of complete and robustly computable characterization of efficient (as opposed to weakly or properly efficient) solutions to vector optimization problems is presented.
Angeregt durch neuere Übersichten der Charakterisierung von optimalen Lösungen von Vektoroptimierungsproblemen und durch Anwendungen auf Entscheidungsunterstützungssysteme wird in diesem Beitrag ein methodischer Ansatz zum Vergleich solcher Charakterisierungen dargestellt. Nach der Spezifizierung von Attributen der Konstruktivität werden alternative Klassen von Charakterisierungen betrachtet. Charakterisierungstheoreme werden entweder zitiert oder, in Ergänzung neuerer Übersichten, dargestellt. Eine der alternativen Klassen der Charakterisierungen wird näher diskutiert. Ein Unmöglichkeitstheorem einer vollständigen und robust berechenbaren Charakterisierung von effizienten (im Gegensatz zu schwach oder streng effizienten) Lösungen der Vektoroptimierungsprobleme wird dargelegt.

References

[1]
Benson HP (1978) Existence of efficient solutions for vector-maximum problems. JOTA 26:569---580
[2]
Bowman VJ Jr (1976) On the relationship of the Chebyshev norm and efficient frontier of multiple-criteria objectives. In: Thiriez H, Zionts S (eds) Multiple criteria decision making. Springer, Berlin Heidelberg New York (Lecture Notes in Economic and Mathematical Systems, vol 130)
[3]
Changkong V, Haimes YT (1978) The interactive surrogate worth trade-off (ISTW) for multiobjective decision making. In: Zionts S (ed) Multiple criteria problem solving. Springer, Berling Heidelberg New York (Lecture Notes in Economic and Mathematical Systems, vol 155)
[4]
Charnes A, Cooper W (1961) Management models and industrial applications of linear programming. John Wiley, New York
[5]
Charnes A, Cooper W (1975) Goal programming and multiple objective optimization. J Oper Res Soc 1:39---54
[6]
Dinkelbach W (1971) Über einen Lösungsansatz zum Vectormaximumproblem. In: Beckman M (ed) Unternehmungs-forschung heute. Springer, Berlin Heidelberg New York (Lecture Notes in Operational Research and Mathematical Systems, vol 50, pp 1---30)
[7]
Dinkelbach W (1982) Entscheidungsmodelle. Walter de Gruyter, Berlin New York
[8]
Dinkelbach W, Iserman H (1973) On decision making under multiple criteria and under incomplete information. In: Cochrane JL, Zeleny M (eds) Multiple criteria decision making. University of South Carolina Press, Columbia, South Carolina
[9]
Dyer JS (1972) Interactive goal programming. Manag Sci 19:62---70
[10]
Ecker JG, Kouada IA (1975) Finding efficient points for linear multiple objective programs. Math Programming 8: 375---377
[11]
Fandel G (1972) Optimale Entscheidung bei mehrfacher Zielsetzung. Springer, Berling Heidelberg New York (Lecture Notes in Economic and Mathematical Systems, vol 76)
[12]
Gal T (1982) On efficient sets in vector maximum problems -- a brief survey. In: Hansen P (ed) Essays and surveys on multiple criteria decision making. Proceedings, Mons 1982. Springer, Berlin Heidelberg New York (Lecture Notes in Economic and Mathematical Systems, vol 209)
[13]
Gearhart WB (1983) Characterization of properly efficient solutions by generalized scalarization methods. JOTA 41: 618---630
[14]
Geoffrion AM (1968) Proper efficiency and the theory of vector optimization. J Math Anal Appl 22:618---630
[15]
Grauer M, Lewandoswki A, Wierzbicki AP (1984) DIDAS: Theory, implementation and experiences. In: Grauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Berlin Heidelberg New York Tokyo (Lecutre Notes in Economic and Mathematical Systems, vol 229)
[16]
Haimes YY, Hall WA, Freedman HB (1975) Multiobjective optimization in water resources systems, the surrogate trade-off method. Elesevier Scientific, New York
[17]
Henig MI (1982) Proper efficiency with respect to cones. JOTA 36:387---407
[18]
Ignizio JP (1983) Generalized goal programming. Comp Oper Res 10:277---291
[19]
Jahn J (1984) Scalarization in vector optimization. Math Programming 29:203---218
[20]
Jahn J (1985) Some characterizations of the optimal solutions of a vector optimization problem. OR Spektrum 7: 7---17
[21]
Kalai E, Smorodinsky M (1975) Other solutions to Nash's bargaining problem. Econometrica 43: 513---518
[22]
Kallio M, Lewandowski A, Orchard-Hays W (1980) An implementation of the reference point approach for multiobjective optimization. WP-80-35, International Institute for Applied Systems Analysis, Laxenburg, Austria
[23]
Korhonen P, Laakso J (1985) A visual interactive method for solving the multiple criteria problem. Eur J Oper Res (to appear)
[24]
Koopmans TC (1951) Analysis of production as an efficient combination of activities. In: Koopmans TC (ed) Activity analysis of production and allocation. Yale University Press, New Haven
[25]
Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Neyman J (ed) Proceedings of the 2-nd Berkeley Symposium on Mathematical Statistics and Probability
[26]
Lewandowski A, Grauer M (1982) The reference point optimization approach -- methods of efficient implementation. WP-82-019, International Institute for Applied Systems Analysis, Laxenburg, Austria
[27]
Lewandowski A, Toth F, Wierzbicki A (1985) A prototype selection committee decision support system -- implementation, tutorial example and user's manual. Mimeograph. International Institute for Applied Systems Analysis, Laxenburg, Austria
[28]
Luce RD, Raiffa H (1957) Games and decisions. John Wiley, New York
[29]
Masud AS, Hwang CL (1981) Interactive sequential goal programming. J Oper Res Soc 32:391---400
[30]
Michalevich VS (1965) Sequential optimization algorithms and their applications (in Russian). Cybernetics (Kybernetika)
[31]
Nakayama H (1985) On the components in interactive multiobjective programming methods. In: Grauer M, Thompson M, Wierzbicki AP (eds) Plural rationality and interactive decision processes. Springer, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Systems, vol 248)
[32]
Nash JF (1950) The bargaining problem. Econometrica 18:155---162
[33]
Sakawa M (1983) Interactive fuzzy decision making for multiobjective nonlinear programming problems. In: Gauer M, Wierzbicki AP (eds) Interactive decision analysis. Springer, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Systems, vol 229)
[34]
Salukvadze ME (1979) Vector-valued optimization problems in control theory. Academic Press, New York
[35]
Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, New York
[36]
Steuer RE, Choo EV (1983) An interactive weighted Chebyshev procedure for multiple objective programming. Mathe Programming 26:326---344
[37]
Wierzbicki AP (1975) Penalty methods in solving optimization problems with vector performance criteria. Working Paper of the Institute of Automatic Control, Technical University of Warsaw (presented at the VI-th IFAC World Congress, Cambridge, Mass.)
[38]
Wierzbicki AP (1977) Basic properties of scalarizing functionals for multiobjective optimization. Mathematische Operationsforschung und Statistik, s. Optimization, 8:55---60
[39]
Wierzbicki AP (1978) On the use of penaly functions in multiobjective optimization. In: Oettli W, Steffens F et al (eds) Proceedings of the III-rd Symposium on Operations Research, Universität Mannheim. Athenäum, Wiesbaden
[40]
Wierzbicki AP (1980) Multiobjective trajectory optimization and model semiregularization. WP-80-181, International Institute for Applied Systems Analysis, Laxenburg, Austria
[41]
Wierzbicki AP (1982) A mathematical basis for satisficing decision making. Math Modelling 3:391---405
[42]
Wierzbicki AP (1983) Negotiation and mediation in conflicts I: The role of mathematical approaches and methods. In: Chestnut H et al (eds) Supplemental ways for improving international stability. Pergamon Press, Oxford
[43]
Wierzbicki AP (1983) Negotiation and mediation in conflicts II: Plural rationality and interactive decision processes. In: Grauer M, Thompson M, Wierzbicki AP (eds) Plural rationality and interactive decision processes. Springer, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Systems, vol 248)
[44]
Yu PL, Leitmann G (1974) Compromise solutions, domination structures and Salukvadze's solution. JOTA 13:362---378
[45]
Zeleny M (1973) Compromise programming. In: Cochrane JL, Zeleny M (eds) Multiple criteria decision making. University of South Carolina Press, Columbia, South Carolina
[46]
Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York
[47]
Zionts S, Wallenius I (1976) An interactive programming method for solving the multiple criteria problem. Manag Sci 22:652---663

Cited By

View all
  • (2024)The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization ProblemsJournal of Optimization Theory and Applications10.1007/s10957-024-02481-8202:3(1187-1216)Online publication date: 1-Sep-2024
  • (2023)Intelligent and Sustainable Transportation through Multi-Objective Model for the Logistic Route-Order Dispatching SystemProceedings of the 2023 ACM Conference on Information Technology for Social Good10.1145/3582515.3609578(530-536)Online publication date: 6-Sep-2023
  • (2023)A new scheme for approximating the weakly efficient solution set of vector rational optimization problemsJournal of Global Optimization10.1007/s10898-023-01287-886:4(905-930)Online publication date: 2-May-2023
  • Show More Cited By
  1. On the completeness and constructiveness of parametric characterizations to vector optimization problems

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image OR Spectrum
      OR Spectrum  Volume 8, Issue 2
      June 1986
      71 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 June 1986

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 21 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization ProblemsJournal of Optimization Theory and Applications10.1007/s10957-024-02481-8202:3(1187-1216)Online publication date: 1-Sep-2024
      • (2023)Intelligent and Sustainable Transportation through Multi-Objective Model for the Logistic Route-Order Dispatching SystemProceedings of the 2023 ACM Conference on Information Technology for Social Good10.1145/3582515.3609578(530-536)Online publication date: 6-Sep-2023
      • (2023)A new scheme for approximating the weakly efficient solution set of vector rational optimization problemsJournal of Global Optimization10.1007/s10898-023-01287-886:4(905-930)Online publication date: 2-May-2023
      • (2022)Comparing reference point based interactive multiobjective optimization methods without a human decision makerJournal of Global Optimization10.1007/s10898-022-01230-385:3(757-788)Online publication date: 24-Sep-2022
      • (2022)Optimistic NAUTILUS navigator for multiobjective optimization with costly function evaluationsJournal of Global Optimization10.1007/s10898-021-01119-783:4(865-889)Online publication date: 1-Aug-2022
      • (2022)LR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutionsJournal of Global Optimization10.1007/s10898-021-01118-883:4(843-863)Online publication date: 1-Aug-2022
      • (2022)Design of a heuristic algorithm for the generalized multi-objective set covering problemComputational Optimization and Applications10.1007/s10589-022-00379-782:3(717-751)Online publication date: 1-Jul-2022
      • (2022)Multi-objective genetic algorithm based on the fuzzy MULTIMOORA method for solving the cardinality constrained portfolio optimizationApplied Intelligence10.1007/s10489-022-04240-653:12(14717-14743)Online publication date: 2-Nov-2022
      • (2021)On the Extension of the DIRECT Algorithm to Multiple ObjectivesJournal of Global Optimization10.1007/s10898-020-00942-879:2(387-412)Online publication date: 1-Feb-2021
      • (2021)A scalarization scheme for binary relations with applications to set-valued and robust optimizationJournal of Global Optimization10.1007/s10898-020-00931-x79:1(233-256)Online publication date: 1-Jan-2021
      • Show More Cited By

      View Options

      View options

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media