Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Challenges of Symbolic Computation

Published: 01 June 2000 Publication History

Abstract

The success of the symbolic mathematical computation discipline is striking. The theoretical advances have been continuous and significant: Gr bner bases, the Risch integration algorithm, integer lattice basis reduction, hypergeometric summation algorithms, etc. From the beginning in the early 1960s, it has been the tradition of our discipline to create software that makes our ideas readily available to scientists, engineers, and educators: SAC-1, Reduce, Macsyma, etc. The commercial viability of our system products is proven by Maple and Mathematica. Today s user communities of symbolic computation systems are diverse: educators, engineers, stock market analysts, etc. The mathematics and computer science in the design and implementation of our algorithms are sophisticated. The research challenges in symbolic computation at the close of the twentieth century are formidable. I state my favorite eight open problems in symbolic computation. They range from problems in symbolic/numeric computing, symbolic algorithm synthesis, to system component construction. I have worked on seven of my problems and borrowed one from George Collins. I present background to each of my problems and a clear-cut test that evaluates whether a proposed attack has solved one of my problems. An additional ninth open problem by Rob Corless and David Jeffrey on complex function semantics is given in an appendix.

References

[1]
S. K. Abdali, G. W. Cherry, N. Soiffer, Proceedings of the 1986 Symposium on Symbolic Algebraic Computation, Symsac ¿86, Char, B. W. 1986, ACM, New York, 24, 30
[2]
N.I. Achiezer, Frederick Ungar Publ. Co, New York, 1956.
[3]
M. Ajtai, C. Dwork, Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, 1997, ACM Press, New York, 284, 293
[4]
A. Antoniou, McGraw-Hill Book Co, New York, 1979.
[5]
L. Babai, 1979, Univ. de Montréal, Dép. de mathématiques et de statistique
[6]
L. Babai, On Lovász lattice reduction and the nearest lattice point problem, Combinatorica, 6 (1986) 1-13.
[7]
O. Bachmann, H. Schönemann, S. Gray, pp. 165, 175
[8]
D. Bailey, P. Borwein, S. Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comput., 66 (1997) 903-913.
[9]
T. Becker, V. Weispfenning, Springer Verlag, New York, 1993.
[10]
E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Comput., 24 (1970) 713-735.
[11]
L. Bernardin, B. Char, E. Kaltofen, pp. 237, 244
[12]
D.J. Bernstein, Composing power series over a finite ring in essentially linear time, J. Symb. Comput., 26 (1998) 339-341.
[13]
R.B. Boppana, R. Hirschfeld, Pseudorandom generators and complexity classes, in: Randomness and Computation, JAI Press Inc, Greenwhich, Connecticut, 1989, pp. 1-26.
[14]
J. M. Borwein, P. Lison¿k
[15]
R.P. Brent, F.G. Gustavson, D.Y.Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé approximants, J. Algorithms, 1 (1980) 259-295.
[16]
M. Bronstein, Springer Verlag, 1997.
[17]
W.S. Brown, On Euclid¿s algorithm and the computation of polynomial greatest common divisors, J. ACM, 18 (1971) 478-504.
[18]
W.S. Brown, J.F. Traub, On Euclid¿s algorithm and the theory of subresultants, J. ACM, 18 (1971) 505-514.
[19]
B. Buchberger, 1965
[20]
B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequationes Math., 4 (1970) 374-383.
[21]
B. Buchberger, Gröbner bases: An algorithmic method in polynomial ideal theory, in: Recent Trends in Multidimensional Systems Theory, D. Reidel Publ. Comp, Dordrecht (Holland), 1985, pp. 184-232.
[22]
P. Bürgisser, M. Clausen, M.A. Shokrollahi, Springer Verlag, Heidelberg, Germany, 1997.
[23]
J. Canny, Generalized characteristic polynomials, J. Symb. Comput., 9 (1990) 241-250.
[24]
J. Canny, E. Kaltofen, L. Yagati, Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic Algebraic Computation, ISSAC ¿89, 1989, ACM, 121, 128
[25]
C. Carathéodory, Chelsea, New York, 1964.
[26]
B.F. Caviness, J.R., eds Johnson, Springer Verlag, Berlin/Heidelberg, 1998.
[27]
G.E. Collins, A method for overlapping and erasure of lists, Commun. ACM, 3 (1960) 655-657.
[28]
R. M. Corless, P. M. Gianni, B. M. Trager, S. M. Watt, pp. 96, 103
[29]
R.M. Corless, D.J. Jeffrey, The unwinding number, SIGSAM Bull., 30 (1996) 28-35.
[30]
D. Cox, J. Little, D. O¿Shea, Springer, New York, 1996.
[31]
S. Dalmas, M. Gaëtano, S. Watt
[32]
A. D¿́az, E. Kaltofen, pp. 30, 37
[33]
A. Dingle, R. Fateman, ISSAC ¿94, Proceedings of the International Symposium on Symbolic Algebraic Computation, 1994, 250, 257
[34]
S, ed. Dooley, ISSAC ¿99, Proceedings of the 1999 International Symposium on Symbolic Algebraic Computing, 1999, ACM Press, New York
[35]
W. Eberly, E. Kaltofen, pp. 176, 183
[36]
C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika, 1 (1936) 211-218.
[37]
I.Z. Emiris, A. Galligo, H. Lombardi, Certified approximate univariate GCDs, J. Pure Appl. Algebra, 117 & 118 (1997) 229-251.
[38]
I. Z. Emiris, V. Y. Pan, pp. 189, 196
[39]
M. J. Encarnación, pp. 265, 270
[40]
J.-C. Faugère
[41]
H. R. P. Ferguson, D. H. Bailey, 1996, NASA Ames Research Center
[42]
C.M. Fiduccia, On obtaining upper bounds on the complexity of matrix multiplication, in: Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 31-40.
[43]
C. M. Fiduccia, 1973
[44]
A. Galligo, S. Watt, pp. 217, 224
[45]
F.R. Gantmacher, Chelsea Publ. Co, New York, 1960.
[46]
J. von zur Gathen, J. Gerhard, Cambridge University Press, Cambridge, 1999.
[47]
J. von zur Gathen, V. Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity, 2 (1992) 187-224.
[48]
M. Giesbrecht, pp. 1, 10
[49]
M. Giesbrecht, A. Lobo, B. D. Saunders, pp. 113, 119
[50]
O, ed. Gloor, ISSAC 98, Proceedings of the International Symposium on Symbolic Algebraic Computation, 1998, ACM Press, New York
[51]
O. Goldreich, S. Goldwasser, S. Halevi, pp. 103, 111
[52]
O. Goldreich, S. Goldwasser, S. Halevi, pp. 112, 131
[53]
G.H. Golub, C.F. Van Loan, Johns Hopkins University Press, Baltimore, 1996.
[54]
A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation, Optimization Methods & Software, 1 (1992) 35-54.
[55]
D. Y. Grigoriev, Y. N. Lakshman, pp. 96, 103
[56]
J. Håstad, B. Just, J.C. Lagarias, C.P. Schnorr, Polynomial time algorithms for finding integer relations among real numbers, SIAM J. Comput., 18 (1989) 859-881.
[57]
M. Hitz, E, eds, Kaltofen, Second International Symposium on Parallel Symbolic Computing PASCO ¿97, 1997, ACM Press, New York
[58]
M. A. Hitz, E. Kaltofen, pp. 236, 243
[59]
M. A. Hitz, E. Kaltofen, Y. N. Lakshman, pp. 205, 212
[60]
P. Husbands, C. L. Jr. Isbell, A. Edelman
[61]
P. Iglio, G. Attardi, pp. 62, 60
[62]
P. Ion, R. Miner
[63]
D. J. Jeffrey, Proceedings of 1993 International Symposium on Symbolic Algebraic Computation, ISSAC ¿93, Bronstein, M. 1993, ACM Press, New York, 34, 41
[64]
D.J. Jeffrey, The importance of being continuous, Math. Mag., 67 (1994) 294-300.
[65]
D.J. Jeffrey, Rectifying transformations for the integration of rational trigonometric functions, J. Symb. Comput., 24 (1997) 563-573.
[66]
D.J. Jeffrey, A.D. Rich, The evaluation of trigonometric integrals avoiding spurious discontinuities, ACM Trans. Math. Softw., 20 (1994) 124-135.
[67]
R.D. Jenks, R.S. Sutor, Springer Verlag, New York, 1992.
[68]
W. Kahan, Numerical linear algebra, Can. Math. Bull., 9 (1966) 757-801.
[69]
B.S.Jr., ed. Kaliski, Springer, Berlin, 1997.
[70]
E. Kaltofen, Polynomial factorization 1987-1991, in: Proceedings of LATIN -92, Springer Verlag, Heidelberg, Germany, 1992, pp. 294-313.
[71]
E. Kaltofen, Effective Noether irreducibility forms and applications, J. Comput. Syst. Sci., 50 (1995) 274-295.
[72]
E. Kaltofen, Y. Lakshman, Improved sparse multivariate polynomial interpolation algorithms, in: Symbolic Algebraic Computation on International Symposium on ISSAC ¿88 Proceedings, Springer Verlag, Heidelberg, Germany, 1988, pp. 467-474.
[73]
E. Kaltofen, M. Monagan, pp. 59, 66
[74]
E. Kaltofen, V. Shoup, pp. 184, 188
[75]
E. Kaltofen, V. Shoup, Subquadratic-time factoring of polynomials over finite fields, Math. Comput., 67 (1998) 1179-1197.
[76]
E. Kaltofen, B. Trager, Computing with polynomials given by black boxes for their evaluations: Greatest common divisors, factorization, separation of numerators and denominators, J. Symb. Comput., 9 (1990) 301-320.
[77]
M. Kaminski, D.G. Kirkpatrick, N.H. Bshouty, Addition requirements for matrix and transposed matrix products, J. Algorithms, 9 (1988) 354-364.
[78]
N. Karmarkar, Y. N. Lakshman, pp. 35, 42
[79]
D.E. Knuth, Addison Wesley, Reading, MA, USA, 1997.
[80]
W, ed. Küchlin, ISSAC 97, Proceedings of the 1997 International Symposium on Symbolic Algebraic Computation, 1997, ACM Press, New York
[81]
Y. N, ed. Lakshman, ISSAC 95 Proceedings of the 1996 International Symposium on Symbolic Algebraic Computation, 1996, ACM Press, New York
[82]
Y. N. Lakshman, B. Char, J. Johnson, pp. 46, 53
[83]
R. Lambert, 1996
[84]
D.F. Lawden, Springer Verlag, 1989.
[85]
D. Lazard, Résolution des systèmes d¿équation algébriques, Theor. Comput. Sci., 15 (1981) 77-110.
[86]
H. Le, C. Howlett, pp. 299, 306
[87]
A.K. Lenstra, Factoring multivariate polynomials over algebraic number fields, SIAM J. Comput., 16 (1987) 591-598.
[88]
A.K. Lenstra, H.W.Jr. Lenstra, L. Lovász, Factoring polynomials with rational coefficients, Math. Ann., 261 (1982) 515-534.
[89]
A. H. M, ed. Levelt, Proceedings of the 1995 International Symposium on Symbolic Algebraic Computation, ISSAC ¿95, 1995, ACM Press, New York
[90]
R. Loos, Computing in algebraic extensions, in: Computer Algebra, Springer Verlag, Vienna, 1982, pp. 173-187.
[91]
R.G.K. Loos, Toward a formal implementation of computer algebra, SIGSAM Bull., 8 (1974) 9-16.
[92]
F.S. Macaulay, Cambridge University, England, 1916.
[93]
J.L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inf. Theory IT-15 (1969) 122-127.
[94]
R.J. Minnichelli, J.J. Anagnost, C.A. Desoer, An elementary proof of Kharitonov¿s stability theorem with extensions, IEEE Trans. Autom. Control, 34 (1989) 995-998.
[95]
M. B. Monagan, Proceedings of DISCO ¿93, Miola, A. 1993, Springer Verlag, Heidelberg, Germany, 81, 94
[96]
T. Mulders, A. Storjohann, pp. 181, 188
[97]
D.R. Musser, Multivariate polynomial factorization, J. ACM, 22 (1975) 291-308.
[98]
D.R. Musser, A. Saini, Addison-Wesley Publ. Comp, Reading, MA, 1996.
[99]
A. Norman, J. Fitch, Proceedings of DISCO ¿96, Calmet, J.Limongelli, C. 1996, Springer Verlag, Heidelberg, Germany, 271, 276
[100]
A. Odlyzko, Austria
[101]
M. Petkov¿ek, H. S. Wilf, D. Zeilberger, A, B
[102]
S. Poljak, J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals Syst., 6 (1993) 1-9.
[103]
R.H. Risch, The problem of integration in finite terms, Trans. Am. Math. Soc., 139 (1969) 167-189.
[104]
A. Schönhage, Quasi-GCD computations, J. Complexity, 1 (1985) 118-137.
[105]
K. Shirayanagi, Floating point Gröbner bases, Math. Comput. Simul., 42 (1996) 509-528.
[106]
V. Shoup, Fast construction of irreducible polynomials over finite fields, J. Symb. Comput., 17 (1994) 371-391.
[107]
V. Shoup, A new polynomial factorization algorithm and its implementation, J. Symb. Comput., 20 (1995) 363-397.
[108]
[109]
V. Shoup, pp. 53, 58
[110]
H. J. Stetter, pp. 117, 124
[111]
D.R. Stoutemyer, Crimes and misdemeanors in the computer algebra trade, Notices AMS, 38 (1991) 778-785.
[112]
J. Teitelbaum, Euclid¿s algorithm and the Lanczos method over finite fields, Math. Comput., 67 (1998) 1665-1678.
[113]
B. M. Trager, Proceedings of the 1976 ACM Symposium on Symbolic Algebraic Computation, 1976, ACM, New York, 219, 228
[114]
G. Villard, pp. 32, 39
[115]
G. Villard
[116]
P. S. Wang, pp. 291, 298
[117]
S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M. Steinbach, R. S. Sutor, ISSAC ¿94, Proceedings of the International Symposium on Symbolic Algebraic Computation, 1994, ACM Press, New York, 25, 31
[118]
P.J. Weinberger, L.P. Rothschild, Factoring polynomials over algebraic number fields, ACM Trans. Math. Softw., 2 (1976) 335-350.
[119]
D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inf. Theory IT-32 (1986) 54-62.
[120]
L. Zhi, W. Wu, Nearest singular polynomial, J. Symb. Comput., 26 (1998) 667-675.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Symbolic Computation
Journal of Symbolic Computation  Volume 29, Issue 6
June 2000
139 pages
ISSN:0747-7171
  • Editor:
  • Hoon Hong
Issue’s Table of Contents

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 June 2000

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Encounters in Symbolic Computation: Ideas for the AgesProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3672619(1-7)Online publication date: 16-Jul-2024
  • (2024)Faster Modular CompositionJournal of the ACM10.1145/363834971:2(1-79)Online publication date: 10-Apr-2024
  • (2023)Elimination ideal and bivariate resultant over finite fieldsProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597100(526-534)Online publication date: 24-Jul-2023
  • (2021)Computing the Characteristic Polynomial of Generic Toeplitz-like and Hankel-like MatricesProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465542(249-256)Online publication date: 18-Jul-2021
  • (2019)Generic Reductions for In-place Polynomial MultiplicationProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326249(187-194)Online publication date: 8-Jul-2019
  • (2019)A fast algorithm for solving linearly recurrent sequencesACM Communications in Computer Algebra10.1145/3313880.331389452:3(100-103)Online publication date: 16-Feb-2019
  • (2018)On Computing the Resultant of Generic Bivariate PolynomialsProceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3209020(391-398)Online publication date: 11-Jul-2018
  • (2017)An Algebraic-Geometric Method for Computing Zolotarev PolynomialsProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087613(173-180)Online publication date: 23-Jul-2017
  • (2014)NAClabACM Communications in Computer Algebra10.1145/2576802.257682947:3/4(170-173)Online publication date: 28-Jan-2014
  • (2013)Modular Composition Modulo Triangular Sets and ApplicationsComputational Complexity10.1007/s00037-013-0063-y22:3(463-516)Online publication date: 1-Sep-2013
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media