Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A New Approximation Algorithm for the Steiner Tree Problem with Performance Ratio 5/3

Published: 01 July 2000 Publication History

Abstract

In this paper we present an RNC approximation algorithm for the Steiner tree problem in graphs with performance ratio 5/3 and RNC approximation algorithms for the Steiner tree problem in networks with performance ratio 5/3+ for all 0. This is achieved by considering a related problem, the minimum spanning tree problem in weighted 3-uniform hypergraphs. For that problem we give a fully polynomial randomized approximation scheme. Our approach also gives rise to conceptually much easier and faster (though randomized) sequential approximation algorithms for the Steiner tree problem than the currently best known algorithms from Karpinski and Zelikovsky which almost match their approximation factor.

References

[1]
S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approximation problems, 1992.
[2]
P. Berman, V. Ramaiyer, Improved approximations for the Steiner tree problem, J. Algorithms, 17 (1994) 381-408.
[3]
M. Bern, P. Plassmann, The Steiner problem with edge lengths 1 and 2, Inform. Process. Lett., 32 (1989) 171-176.
[4]
A. Borchers, D.-Z. Du, The k-Steiner ratio in graphs, 1995.
[5]
P.M. Camerini, G. Galbiati, F. Maffioli, Random pseudo-polynomial algorithms for exact matroid problems, J. Algorithms, 13 (1992) 258-273.
[6]
Choukhmane El-Arbi, Une heuristique pour le problème de l'arbre de Steiner, RAIRO. Rech. Opér., 12 (1978) 207-212.
[7]
D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, 1987.
[8]
S.E. Dreyfus, R.A. Wagner, The Steiner problem in graphs, Networks, 1 (1972) 195-207.
[9]
D.-Z. Du, Y.-J. Zhang, Q. Feng, On better heuristic for Euclidean Steiner minimum trees, 1991.
[10]
H.N. Gabow, M. Stallmann, An augmenting path algorithm for linear matroid parity, Combinatorics, 6 (1986) 123-150.
[11]
R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, Plenum, New York, 1972, pp. 85-103.
[12]
M. Karpinski, A.Z. Zelikovsky, New approximation algorithms for the Steiner tree problem, J. Comb. Optim., 1 (1997) 47-65.
[13]
L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta Inform., 15 (1981) 141-145.
[14]
S. Lang, Addison¿Wesley, Reading, 1993.
[15]
L. Lovász, The matroid matching problem, Colloquia Mathematica Societatis János Bolyai, Szeged, 1978.
[16]
L. Lovász, On determinants, matchings and random algorithms, Fund. Comput. Theory, 79 (1979) 565-574.
[17]
K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as easy as matrix inversion, Combinatorica, 7 (1987) 105-113.
[18]
H. Narayanan, H. Saran, V.V. Vazirani, Randomized parallel algorithms for matroid union and intersection, with applications to arboreseces and edge-disjoint spanning trees, SIAM J. Comput., 23 (1994) 387-397.
[19]
V. Pan, Fast and efficient algorithms for the exact inversion of integer matrices, Springer-Verlag, Berlin/New York, 1985.
[20]
H.J. Prömel, A. Steger, Vieweg Verlag, Wiesbaden, 2000.
[21]
H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem in graphs, Math. Japon., 24 (1980) 573-577.
[22]
A.Z. Zelikovsky, An 11/6-approximation algorithm for the network Steiner problem, Algorithmica, 9 (1993) 463-470.
[23]
A. Z. Zelikovsky, Better Approximation Algorithms for the Network and Euclidean Steiner Tree Problems, Technical report, Kishinev, 1995.

Cited By

View all
  • (2024)A Powerful Local Search Method for Minimum Steiner Tree ProblemWeb and Big Data10.1007/978-981-97-7241-4_4(50-66)Online publication date: 31-Aug-2024
  • (2023)Truthful mechanisms for steiner tree problemsProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i5.25729(5884-5891)Online publication date: 7-Feb-2023
  • (2023)Near-optimal Steiner tree computation powered by node embeddingsKnowledge and Information Systems10.1007/s10115-023-01893-865:11(4563-4583)Online publication date: 1-Nov-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Algorithms
Journal of Algorithms  Volume 36, Issue 1
July 2000
117 pages
ISSN:0196-6774
Issue’s Table of Contents

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 July 2000

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Powerful Local Search Method for Minimum Steiner Tree ProblemWeb and Big Data10.1007/978-981-97-7241-4_4(50-66)Online publication date: 31-Aug-2024
  • (2023)Truthful mechanisms for steiner tree problemsProceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v37i5.25729(5884-5891)Online publication date: 7-Feb-2023
  • (2023)Near-optimal Steiner tree computation powered by node embeddingsKnowledge and Information Systems10.1007/s10115-023-01893-865:11(4563-4583)Online publication date: 1-Nov-2023
  • (2023)An ETH-Tight Algorithm for Bidirected Steiner ConnectivityAlgorithms and Data Structures10.1007/978-3-031-38906-1_39(588-604)Online publication date: 31-Jul-2023
  • (2022)Parameterized Study of Steiner Tree on Unit Disk GraphsAlgorithmica10.1007/s00453-022-01020-z85:1(133-152)Online publication date: 5-Aug-2022
  • (2022)Combination Algorithms for Steiner Tree VariantsAlgorithmica10.1007/s00453-022-01009-885:1(153-169)Online publication date: 8-Aug-2022
  • (2021)Parameterized Approximation Algorithms for Bidirected Steiner Network ProblemsACM Transactions on Algorithms10.1145/344758417:2(1-68)Online publication date: 19-Apr-2021
  • (2021)Improved distributed approximation for Steiner tree in the CONGEST modelJournal of Parallel and Distributed Computing10.1016/j.jpdc.2021.08.004158:C(196-212)Online publication date: 1-Dec-2021
  • (2020)Round-Message Trade-Off in Distributed Steiner Tree Construction in the CONGEST ModelDistributed Computing and Internet Technology10.1007/978-3-030-36987-3_7(111-126)Online publication date: 9-Jan-2020
  • (2019)Polynomial-time approximation scheme for minimum k-cut in planar and minor-free graphsProceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3310435.3310500(1055-1068)Online publication date: 6-Jan-2019
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media