Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/645484.656386guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases

Published: 02 April 2001 Publication History

Abstract

No abstract available.

Cited By

View all
  • (2019)Constraint programming for mining borders of frequent itemsetsProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367032.3367184(1064-1070)Online publication date: 10-Aug-2019
  • (2019)A review of conceptual clustering algorithmsArtificial Intelligence Review10.1007/s10462-018-9627-152:2(1267-1296)Online publication date: 1-Aug-2019
  • (2018)DIFFProceedings of the VLDB Endowment10.14778/3297753.329776112:4(419-432)Online publication date: 1-Dec-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Proceedings of the 17th International Conference on Data Engineering
April 2001
610 pages
ISBN:0769510019

Publisher

IEEE Computer Society

United States

Publication History

Published: 02 April 2001

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Constraint programming for mining borders of frequent itemsetsProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367032.3367184(1064-1070)Online publication date: 10-Aug-2019
  • (2019)A review of conceptual clustering algorithmsArtificial Intelligence Review10.1007/s10462-018-9627-152:2(1267-1296)Online publication date: 1-Aug-2019
  • (2018)DIFFProceedings of the VLDB Endowment10.14778/3297753.329776112:4(419-432)Online publication date: 1-Dec-2018
  • (2018)Incremental mining maximal frequent patterns from univariate uncertain dataKnowledge-Based Systems10.1016/j.knosys.2018.04.001152:C(40-50)Online publication date: 15-Jul-2018
  • (2018)Association rule mining algorithms on high-dimensional datasetsArtificial Life and Robotics10.1007/s10015-018-0437-y23:3(420-427)Online publication date: 1-Sep-2018
  • (2017)A two-phase approach to mine short-period high-utility itemsets in transactional databasesAdvanced Engineering Informatics10.1016/j.aei.2017.04.00733:C(29-43)Online publication date: 1-Aug-2017
  • (2017)Efficiently mining association rules based on maximum single constraintsVietnam Journal of Computer Science10.1007/s40595-017-0096-24:4(261-277)Online publication date: 1-Nov-2017
  • (2017)Local and global symmetry breaking in itemset miningAnnals of Mathematics and Artificial Intelligence10.1007/s10472-016-9528-480:1(91-112)Online publication date: 1-May-2017
  • (2016)Structure of frequent itemsets with extended double constraintsVietnam Journal of Computer Science10.1007/s40595-015-0056-73:2(119-135)Online publication date: 1-May-2016
  • (2016)Frequent Itemset Border Approximation by DualizationTransactions on Large-Scale Data- and Knowledge-Centered Systems XXVI - Volume 967010.1007/978-3-662-49784-5_2(32-60)Online publication date: 1-Feb-2016
  • Show More Cited By

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media