Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3293524.3293530guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Revisiting the evaluation of in situ lagrangian analysis

Published: 04 June 2018 Publication History

Abstract

In situ usage of Lagrangian techniques has proven to be superior with respect to emerging supercomputing trends than the traditional Eulerian approach for scientific flow analysis. However, previous studies have not informed two key points: (1) the accuracy of the post hoc interpolated trajectory as a whole and (2) the spatiotemporal tradeoffs involved when using Lagrangian analysis. With this short paper, we address these points. We first conduct a more comprehensive evaluation via additional accuracy metrics tailored for evaluating Lagrangian trajectories. Second, we provide an understanding of the configurations where the Lagrangian approach works well by studying spatiotemporal tradeoffs. In addition, our study highlights the effects of error propagation and accumulation when performing Lagrangian interpolation for large numbers of steps. We believe our study is significant for better understanding the use of in situ Lagrangian techniques, as well as serving as a baseline for future Lagrangian research.

References

[1]
{ACG*14} Agranovsky A., Camp D., Garth C., Bethel E. W., Joy K. I., Childs H.: Improved post hoc flow analysis via lagrangian representations. In Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on (2014), IEEE, pp. 67--75. 1, 2, 3
[2]
{AGJ11} Agranovsky A., Garth C., Joy K. I.: Extracting flow structures using sparse particles. In VMV (2011), pp. 153--160. 2
[3]
{AJO*14} Ahrens J., Jourdain S., O'Leary P., Patchett J., Rogers D. H., Petersen M.: An image-based approach to extreme scale in situ visualization and analysis. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2014), IEEE Press, pp. 424--434. 1
[4]
{Atk08} Atkinson K. E.: An introduction to numerical analysis. John Wiley & Sons, 2008. 2
[5]
{BAA*16} Bauer A. C., Abbasi H., Ahrens J., Childs H., Geveci B., Klasky S., Moreland K., O'Leary P., Vishwanath V., Whitlock B., et al.: In situ methods, infrastructures, and applications on high performance computing platforms. In Computer Graphics Forum (2016), vol. 35, Wiley Online Library, pp. 577--597. 1
[6]
{BCT01} Brummell N., Cattaneo F., Tobias S.: Linear and nonlinear dynamo properties of time-dependent abc flows. Fluid Dynamics Research 28, 4 (2001), 237--265. 2
[7]
{BJ15} Bujack R., Joy K. I.: Lagrangian representations of flow fields with parameter curves. In Large Data Analysis and Visualization (LDAV), 2015 IEEE 5th Symposium on (2015), IEEE, pp. 41--48. 2, 3
[8]
{CBJ16} Chandler J., Bujack R., Joy K. I.: Analysis of error in interpolation-based pathline tracing. In Proceedings of the Eurographics / IEEE VGTC Conference on Visualization: Short Papers (2016), EuroVis '16, Eurographics Association, pp. 1--5.
[9]
{CK90} Cash J. R., Karp A. H.: A variable order runge-kutta method for initial value problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software (TOMS) 16, 3 (1990), 201--222. 2
[10]
{COJ15} Chandler J., Obermaier H., Joy K. I.: Interpolation-based pathline tracing in particle-based flow visualization. IEEE transactions on visualization and computer graphics 21, 1 (2015), 68--80. 2
[11]
{FMT*11} Fabian N., Moreland K., Thompson D., Bauer A. C., Marion P., Gevecik B., Rasquin M., Jansen K. E.: Theparaview coprocessing library: A scalable, general purpose in situ visualization library. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on (2011), IEEE, pp. 89--96. 1
[12]
{GGTH07} Garth C., Gerhardt F., Tricoche X., Hans H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1464--1471. 2
[13]
{GLT*09} Garth C., Li G.-S., Tricoche X., Hansen C. D., Hagen H.: Visualization of coherent structures in transient 2d flows. In Topology-Based Methods in Visualization II. Springer, 2009, pp. 1--13. 2
[14]
{Hal00} Haller G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos: An Interdisciplinary Journal of Non-linear Science 10, 1 (2000), 99--108. 2
[15]
{Hal01} Haller G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D: Nonlinear Phenomena 149, 4 (2001), 248--277. 2
[16]
{HBJG16} Hummel M., Bujack R., Joy K. I., Garth C.: Error Estimates for Lagrangian Flow Field Representations. In EuroVis 2016 - Short Papers (2016), The Eurographics Association. 2, 4
[17]
{HSW11} Hlawatsch M., Sadlo F., Weiskopf D.: Hierarchical line integration. IEEE transactions on visualization and computer graphics 17, 8 (2011), 1148--1163. 2
[18]
{HY00} Haller G., Yuan G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D: Nonlinear Phenomena 147, 3 (2000), 352--370. 2
[19]
{MOM*11} Moreland K., Oldfield R., Marion P., Jourdain S., Podhorszki N., Vishwanath V., Fabian N., Docan C., Parashar M., Hereld M., et al.: Examples of in transit visualization. In Proceedings of the 2nd international workshop on Petascal data analytics: challenges and opportunities (2011), ACM, pp. 1--6. 1
[20]
{OWW15} Orf L., Wilhelmson R., Wicker L.: Visualization of a simulated Long-Track EF5 tornado embedded within a supercell thunderstorm. Parallel Comput. 0, 0 (2015). In press. 2
[21]
{Sch02} Schatzmann M.: Numerical Analysis: A Mathematical Introduction. Oxford University Press, New York, USA, 2002. 2
[22]
{SP07} Sadlo F., Peikert R.: Efficient visualization of lagrangian coherent structures by filtered amr ridge extraction. IEEE Transactions on Visualization and Computer Graphics 13, 6 (2007), 1456--1463. 2
[23]
{SRP11} Sadlo F., Rigazzi A., Peikert R.: Time-dependent visualization of lagrangian coherent structures by grid advection. In Topological Methods in Data Analysis and Visualization. Springer, 2011, pp. 151--165. 2
[24]
{SXM16} Sauer F., Xie J., Ma K.-L.: A combined eulerian-lagrangian data representation for large-scale applications. IEEE Transactions on Visualization and Computer Graphics (2016). 2
[25]
{VHP11} Vishwanath V., Hereld M., Papka M. E.: Toward simulation-time data analysis and i/o acceleration on leadership-class systems. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on (2011), IEEE, pp. 9--14. 1
[26]
{WFM11} Whitlock B., Favre J. M., Meredith J. S.: Parallel in situ coupling of simulation with a fully featured visualization system. In Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization (2011), EGPGV '11, Eurographics Association, pp. 101--109. 1
[27]
{YWG*10} Yu H., Wang C., Grout R. W., Chen J. H., Ma K.-L.: In situ visualization for large-scale combustion simulations. IEEE computer graphics and applications 30, 3 (2010), 45--57. 1

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
EGPGV '18: Proceedings of the Symposium on Parallel Graphics and Visualization
June 2018
88 pages

Publisher

Eurographics Association

Goslar, Germany

Publication History

Published: 04 June 2018

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Oct 2024

Other Metrics

Citations

View Options

View options

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media