Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Optimal Partition Trees

Published: 01 June 2012 Publication History

Abstract

We revisit one of the most fundamental classes of data structure problems in computational geometry: range searching. Matoušek (Discrete Comput. Geom. 10:157---182, 1993) gave a partition tree method for d-dimensional simplex range searching achieving O(n) space and O(n1ź1/d) query time. Although this method is generally believed to be optimal, it is complicated and requires O(n1+ź) preprocessing time for any fixed ź>0. An earlier method by Matoušek (Discrete Comput. Geom. 8:315---334, 1992) requires O(nlogn) preprocessing time but O(n1ź1/dlogO(1)n) query time. We give a new method that achieves simultaneously O(nlogn) preprocessing time, O(n) space, and O(n1ź1/d) query time with high probability. Our method has several advantages: It is conceptually simpler than Matoušek's O(n1ź1/d)-time method. Our partition trees satisfy many ideal properties (e.g., constant degree, optimal crossing number at almost all layers, and disjointness of the children's cells at each node).It leads to more efficient multilevel partition trees, which are needed in many data structuring applications (each level adds at most one logarithmic factor to the space and query bounds, better than in all previous methods).A similar improvement applies to a shallow version of partition trees, yielding O(nlogn) time, O(n) space, and O(n1ź1/źd/2ź) query time for halfspace range emptiness in even dimensions dź4. Numerous consequences follow (e.g., improved results for computing spanning trees with low crossing number, ray shooting among line segments, intersection searching, exact nearest neighbor search, linear programming queries, finding extreme points, ź).

References

[1]
Afshani, P., Chan, T.M.: Optimal halfspace range reporting in three dimensions. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms, pp. 180---186 (2009)
[2]
Agarwal, P.K.: Intersection and Decomposition Algorithms for Planar Arrangements. Cambridge University Press, Cambridge (1991)
[3]
Agarwal, P.K.: Ray shooting and other applications of spanning trees with low stabbing number. SIAM J. Comput. 21, 540---570 (1992)
[4]
Agarwal, P.K.: Range searching. In: Goodman, J., O'Rourke, J. (eds.) CRC Handbook of Discrete and Computational Geometry. CRC Press, New York (2004)
[5]
Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Discrete and Computational Geometry: Ten Years Later, pp. 1---56. AMS, Providence (1999)
[6]
Agarwal, P.K., Matoušek, J.: On range searching with semialgebraic sets. Discrete Comput. Geom. 11, 393---418 (1994)
[7]
Agarwal, P.K., Sharir, M.: Applications of a new space-partitioning technique. Discrete Comput. Geom. 9, 11---38 (1993)
[8]
Agarwal, P.K., Aronov, B., Suri, S.: Stabbing triangulations by lines in 3D. In: Proc. 10th ACM Sympos. Comput. Geom., pp. 267---276 (1995)
[9]
Agarwal, P.K., Efrat, A., Sharir, M.: Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. SIAM J. Comput. 29, 912---953 (1999)
[10]
Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient searching with linear constraints. J. Comput. Syst. Sci. 61, 194---216 (2000)
[11]
Amato, N.M., Goodrich, M.T., Ramos, E.A.: Parallel algorithms for higher-dimensional convex hulls. In: Proc. 35th IEEE Sympos. Found. Comput. Sci., pp. 683---694 (1994)
[12]
Arora, S., Hazan, E., Kale, S.: Multiplicative weights method: a meta-algorithm and its applications. Theory Comput. (2012, to appear)
[13]
Arya, S., Mount, D.M., Xia, J.: Tight lower bounds for halfspace range searching. In: Proc. 26th ACM Sympos. Comput. Geom., pp. 29---37 (2010)
[14]
Bentley, J., Saxe, J.: Decomposable searching problems I: static-to-dynamic transformation. J. Algorithms 1, 301---358 (1980)
[15]
Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14, 463---479 (1995)
[16]
Chan, T.M.: Fixed-dimensional linear programming queries made easy. In: Proc. 12th ACM Sympos. Comput. Geom., pp. 284---290 (1996)
[17]
Chan, T.M.: Output-sensitive results on convex hulls, extreme points, and related problems. Discrete Comput. Geom. 16, 369---387 (1996)
[18]
Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 423---429 (2004)
[19]
Chan, T.M., Snoeyink, J., Yap, C.-K.: Primal dividing and dual pruning: output-sensitive construction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Discrete Comput. Geom. 18, 433---454 (1997)
[20]
Chazelle, B.: Lower bounds on the complexity of polytope range searching. J. Am. Math. Soc. 2, 637---666 (1989)
[21]
Chazelle, B.: Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9, 145---158 (1993)
[22]
Chazelle, B: Cuttings. In: Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applications, pp. 25.1---25.10. CRC Press, Boca Raton (2005)
[23]
Chazelle, B., Friedman, J.: A deterministic view of random sampling and its use in geometry. Combinatorica 10, 229---249 (1990)
[24]
Chazelle, B., Rosenberg, B.: Simplex range reporting on a pointer machine. Comput. Geom., Theory Appl. 5, 237---247 (1996)
[25]
Chazelle, B., Welzl, E.: Quasi-optimal range searching in space of finite VC-dimension. Discrete Comput. Geom. 4, 467---489 (1989)
[26]
Chazelle, B., Sharir, M., Welzl, E.: Quasi-optimal upper bounds for simplex range searching and new zone theorems. Algorithmica 8, 407---429 (1992)
[27]
Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Comput. 17, 830---847 (1988)
[28]
Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. ACM 42, 488---499 (1995)
[29]
Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387---421 (1989)
[30]
de Berg, M., Schwarzkopf, O.: Cuttings and applications. Int. J. Comput. Geom. Appl. 5, 343---355 (1995)
[31]
Dobkin, D., Edelsbrunner, H.: Organizing point sets in two and three dimensions. Report f130, Inst. Informationsverarb., Tech. Univ. Graz, Austria (1984)
[32]
Edelsbrunner, H., Huber, F.: Dissecting sets of points in two and three dimensions. Report f138, Inst. Informationsverarb., Tech. Univ. Graz, Austria (1984)
[33]
Edelsbrunner, H., Welzl, E.: Halfplanar range search in linear space and O(n0.695) query time. Inf. Process. Lett. 23, 289---293 (1986)
[34]
Edelsbrunner, H., Guibas, L., Hershberger, J., Seidel, R., Sharir, M., Snoeyink, J., Welzl, E.: Implicitly representing arrangements of lines or segments. Discrete Comput. Geom. 4, 433---466 (1989)
[35]
Haussler, D., Welzl, E.: Epsilon-nets simplex range queries. Discrete Comput. Geom. 2, 127---151 (1987)
[36]
Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms 18, 403---431 (1995)
[37]
Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13---30 (1963)
[38]
Matoušek, J.: Spanning trees with low crossing number. RAIRO Theor. Inform. Appl. 25, 103---124 (1991)
[39]
Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315---334 (1992)
[40]
Matoušek, J.: Reporting points in halfspaces. Comput. Geom., Theory Appl. 2, 169---186 (1992)
[41]
Matoušek, J.: Linear optimization queries. J. Algorithms 14, 432---448 (1993). Also with O. Schwarzkopf in Proc. 8th ACM Sympos. Comput. Geom., pp. 16---25, 1992
[42]
Matoušek, J.: Range searching with efficient hierarchical cuttings. Discrete Comput. Geom. 10, 157---182 (1993)
[43]
Matoušek, J.: Geometric range searching. ACM Comput. Surv. 26, 421---461 (1994)
[44]
Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002)
[45]
Matoušek, J., Schwarzkopf, O.: On ray shooting in convex polytopes. Discrete Comput. Geom. 10, 215---232 (1993)
[46]
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
[47]
Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Englewood Cliffs (1994)
[48]
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)
[49]
Ramos, E.: On range reporting, ray shooting, and k-level construction. In: Proc. 15th ACM Sympos. Comput. Geom., pp. 390---399 (1999)
[50]
Ramos, E.: Linear programming queries revisited. In: Proc. 16th ACM Sympos. Comput. Geom., pp. 176---181 (2000)
[51]
Seidel, R.: Constructing higher-dimensional convex hulls at logarithmic cost per face. In: Proc. 18th ACM Sympos. Theory Comput, pp. 404---413 (1986)
[52]
Welzl, E.: On spanning trees with low crossing numbers. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. Lect. Notes Comput. Sci., vol. 594, pp. 233---249. Springer, Berlin (1992)
[53]
Willard, D.E.: Polygon retrieval. SIAM J. Comput. 11, 149---165 (1982)
[54]
Yao, A.C., Yao, F.F.: A general approach to D-dimensional geometric queries. In: Proc. 17th ACM Sympos. Theory Comput., pp. 163---168 (1985)
[55]
Yao, F.F.: A 3-space partition and its applications. In: Proc. 15th ACM Sympos. Theory Comput., pp. 258---263 (1983)
[56]
Yao, F.F., Dobkin, D.P., Edelsbrunner, H., Paterson, M.S.: Partitioning space for range queries. SIAM J. Comput. 18, 371---384 (1989)

Cited By

View all
  • (2024)On Reporting Durable Patterns in Temporal Proximity GraphsProceedings of the ACM on Management of Data10.1145/36511442:2(1-26)Online publication date: 14-May-2024
  • (2023)Bypass exponential time preprocessingProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668209(48110-48137)Online publication date: 10-Dec-2023
  • (2023)Indexing for Keyword Search with Structured ConstraintsProceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3584372.3588663(263-275)Online publication date: 18-Jun-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 47, Issue 4
June 2012
114 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 June 2012

Author Tags

  1. Geometric data structures
  2. Halfspace range searching
  3. Simplex range searching

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)On Reporting Durable Patterns in Temporal Proximity GraphsProceedings of the ACM on Management of Data10.1145/36511442:2(1-26)Online publication date: 14-May-2024
  • (2023)Bypass exponential time preprocessingProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668209(48110-48137)Online publication date: 10-Dec-2023
  • (2023)Indexing for Keyword Search with Structured ConstraintsProceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3584372.3588663(263-275)Online publication date: 18-Jun-2023
  • (2023)Lower Bounds for Semialgebraic Range Searching and Stabbing ProblemsJournal of the ACM10.1145/357857470:2(1-26)Online publication date: 18-Apr-2023
  • (2022)An Improved Bound for Weak Epsilon-nets in the PlaneJournal of the ACM10.1145/355598569:5(1-35)Online publication date: 27-Oct-2022
  • (2021)Does preprocessing help training over-parameterized neural networks?Proceedings of the 35th International Conference on Neural Information Processing Systems10.5555/3540261.3542014(22890-22904)Online publication date: 6-Dec-2021
  • (2019)Output-Optimal Massively Parallel Algorithms for Similarity JoinsACM Transactions on Database Systems10.1145/331196744:2(1-36)Online publication date: 8-Apr-2019
  • (2018)Semi-Group Range Sum RevisitedAlgorithmica10.1007/s00453-017-0307-380:4(1315-1329)Online publication date: 1-Apr-2018
  • (2017)Instance-Optimal Geometric AlgorithmsJournal of the ACM10.1145/304667364:1(1-38)Online publication date: 17-Mar-2017
  • (2017)Output-optimal Parallel Algorithms for Similarity JoinsProceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3034786.3056110(79-90)Online publication date: 9-May-2017
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media