Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3666122.3669098guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
research-article

Bayesian nonparametric (non-)renewal processes for analyzing neural spike train variability

Published: 30 May 2024 Publication History

Abstract

Neural spiking activity is generally variable, non-stationary, and exhibits complex dependencies on covariates, such as sensory input or behavior. These dependencies have been proposed to be signatures of specific computations, and so characterizing them with quantitative rigor is critical for understanding neural computations. Approaches based on point processes provide a principled statistical framework for modeling neural spiking activity. However, currently, they only allow the instantaneous mean, but not the instantaneous variability, of responses to depend on covariates. To resolve this limitation, we propose a scalable Bayesian approach generalizing modulated renewal processes using sparse variational Gaussian processes. We leverage pathwise conditioning for computing nonparametric priors over conditional interspike interval distributions and rely on automatic relevance determination to detect lagging interspike interval dependencies beyond renewal order. After systematically validating our method on synthetic data, we apply it to two foundational datasets of animal navigation: head direction cells in freely moving mice and hippocampal place cells in rats running along a linear track. Our model exhibits competitive or better predictive power compared to state-of-the-art baselines, and outperforms them in terms of capturing interspike interval statistics. These results confirm the importance of modeling covariate-dependent spiking variability, and further analyses of our fitted models reveal rich patterns of variability modulation beyond the temporal resolution of flexible count-based approaches.

Supplementary Material

Additional material (3666122.3669098_supp.pdf)
Supplemental material.

References

[1]
Avila-Akerberg, O. and Chacron, M. J. (2011). Nonrenewal spike train statistics: causes and functional consequences on neural coding. Experimental brain research, 210(3):353-371.
[2]
Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., and Brown, E. N. (2001). Construction and analysis of non-poisson stimulus-response models of neural spiking activity. Journal of neuroscience methods, 105(1):25-37.
[3]
Bellec, G., Wang, S., Modirshanechi, A., Brea, J., and Gerstner, W. (2021). Fitting summary statistics of neural data with a differentiable spiking network simulator. Advances in Neural Information Processing Systems, 34:18552-18563.
[4]
Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations of Python+NumPy programs.
[5]
Brown, E. N., Barbieri, R., Eden, U. T., and Frank, L. M. (2003). Likelihood methods for neural spike train data analysis. Computational neuroscience: A comprehensive approach, pages 253-286.
[6]
Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., and Frank, L. M. (2002). The time-rescaling theorem and its application to neural spike train data analysis. Neural computation, 14(2):325-346.
[7]
Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., and Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience, 18(18):7411-7425.
[8]
Chacron, M. J., Lindner, B., and Longtin, A. (2004). Noise shaping by interval correlations increases information transfer. Physical review letters, 92(8):080601.
[9]
Chacron, M. J., Longtin, A., and Maler, L. (2001). Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. Journal of Neuroscience, 21(14):5328-5343.
[10]
Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations. In Advances in neural information processing systems, pages 6571-6583.
[11]
Churchland, A. K., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., and Shadlen, M. N. (2011). Variance as a signature of neural computations during decision making. Neuron, 69(4):818-831.
[12]
Churchland, M. M., Byron, M. Y., Cunningham, J. P., Sugrue, L. P., Cohen, M. R., Corrado, G. S., Newsome, W. T., Clark, A. M., Hosseini, P., Scott, B. B., et al. (2010). Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nature neuroscience, 13(3):369.
[13]
Coleman, T. P. and Sarma, S. S. (2010). A computationally efficient method for nonparametric modeling of neural spiking activity with point processes. Neural Computation, 22(8):2002-2030.
[14]
Cox, D. R. (1972). The statistical analysis of dependencies in point processes. Stochastic Point Processes. Wiley: New York, pages 55-66.
[15]
Cunningham, J. P., Shenoy, K. V., and Sahani, M. (2008). Fast gaussian process methods for point process intensity estimation. In Proceedings of the 25th international conference on Machine learning, pages 192-199.
[16]
Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2007). Inferring neural firing rates from spike trains using gaussian processes. Advances in neural information processing systems, 20.
[17]
DePasquale, B., Sussillo, D., Abbott, L., and Churchland, M. M. (2023). The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks. Neuron.
[18]
Dowling, M., Zhao, Y., and Park, I. M. (2020). Non-parametric generalized linear model. arXiv preprint arXiv:2009.01362.
[19]
Duncker, L. and Sahani, M. (2018). Temporal alignment and latent gaussian process factor inference in population spike trains. Advances in neural information processing systems, 31.
[20]
Echeveste, R., Aitchison, L., Hennequin, G., and Lengyel, M. (2020). Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference. bioRxiv, page 696088.
[21]
Ecker, A. S., Berens, P., Cotton, R. J., Subramaniyan, M., Denfield, G. H., Cadwell, C. R., Smirnakis, S. M., Bethge, M., and Tolias, A. S. (2014). State dependence of noise correlations in macaque primary visual cortex. Neuron, 82(1):235-248.
[22]
Engel, T. A., Helbig, B., Russell, D. F., Schimansky-Geier, L., and Neiman, A. B. (2009). Coherent stochastic oscillations enhance signal detection in spiking neurons. Physical Review E, 80(2):021919.
[23]
Escola, S., Fontanini, A., Katz, D., and Paninski, L. (2011). Hidden markov models for the stimulus-response relationships of multistate neural systems. Neural computation, 23(5):1071-1132.
[24]
Faisal, A. A., Selen, L. P., and Wolpert, D. M. (2008). Noise in the nervous system. Nature reviews neuroscience, 9(4):292-303.
[25]
Farkhooi, F., Strube-Bloss, M. F., and Nawrot, M. P. (2009). Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability. Physical Review E, 79(2):021905.
[26]
Fenton, A. A. and Muller, R. U. (1998). Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proceedings of the National Academy of Sciences, 95(6):3182-3187.
[27]
Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal perception and learning: from behavior to neural representations. Trends in cognitive sciences, 14(3):119-130.
[28]
Gao, Y., Busing, L., Shenoy, K. V., and Cunningham, J. P. (2015). High-dimensional neural spike train analysis with generalized count linear dynamical systems. In Advances in neural information processing systems, pages 2044-2052.
[29]
Gerhard, F., Deger, M., and Truccolo, W. (2017). On the stability and dynamics of stochastic spiking neuron models: Nonlinear hawkes process and point process glms. PLoS computational biology, 13(2):e1005390.
[30]
Gerhard, F., Haslinger, R., and Pipa, G. (2011). Applying the multivariate time-rescaling theorem to neural population models. Neural computation, 23(6):1452-1483.
[31]
Gerstner, W. (2001). A framework for spiking neuron models: The spike response model. In Handbook of biological physics, volume 4, pages 469-516. Elsevier.
[32]
Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics: From single neurons to networks and models ofcognition. Cambridge University Press.
[33]
Gerstner, W., Kreiter, A. K., Markram, H., and Herz, A. V. (1997). Neural codes: firing rates and beyond. Proceedings of the National Academy of Sciences, 94(24):12740-12741.
[34]
Ghanbari, A., Lee, C. M., Read, H. L., and Stevenson, I. H. (2019). Modeling stimulus-dependent variability improves decoding of population neural responses. Journal of Neural Engineering, 16(6):066018.
[35]
Harris, K. D., Henze, D. A., Hirase, H., Leinekugel, X., Dragoi, G., Czurkó, A., and Buzsáki, G. (2002). Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature, 417(6890):738-741.
[36]
Hennequin, G., Ahmadian, Y., Rubin, D. B., Lengyel, M., and Miller, K. D. (2018). The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron, 98(4):846-860.
[37]
Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In Nicholson, A. E. and Smyth, P., editors, Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013. AUAI Press.
[38]
Hill, D. N., Mehta, S. B., and Kleinfeld, D. (2011). Quality metrics to accompany spike sorting of extracellular signals. Journal of Neuroscience, 31(24):8699-8705.
[39]
Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347.
[40]
Jensen, K., Kao, T.-C., Stone, J., and Hennequin, G. (2021). Scalable bayesian gpfa with automatic relevance determination and discrete noise models. Advances in Neural Information Processing Systems, 34:10613-10626.
[41]
Jia, J. and Benson, A. R. (2019). Neural jump stochastic differential equations. Advances in Neural Information Processing Systems, 32.
[42]
Kass, R. E., Kelly, R. C., and Loh, W.-L. (2011). Assessment of synchrony in multiple neural spike trains using loglinear point process models. The annals of applied statistics, 5(2B):1262.
[43]
Kass, R. E. and Ventura, V. (2001). A spike-train probability model. Neural computation, 13(8):1713-1720.
[44]
Kayser, C., Logothetis, N. K., and Panzeri, S. (2010). Millisecond encoding precision of auditory cortex neurons. Proceedings of the National Academy of Sciences, 107(39):16976—16981.
[45]
Kim, S., Putrino, D., Ghosh, S., and Brown, E. N. (2011). A granger causality measure for point process models of ensemble neural spiking activity. PLoS computational biology, 7(3):e1001110.
[46]
Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[47]
Linderman, S.W., Adams, R. P., and Pillow, J. W. (2015). Inferring structured connectivity from spike trains under negative-binomial generalized linear models. Cosyne Abstracts.
[48]
Liu, D. and Lengyel, M. (2021). A universal probabilistic spike count model reveals ongoing modulation of neural variability. Advances in Neural Information Processing Systems, 34:13392-13405.
[49]
London, M., Roth, A., Beeren, L., Hausser, M., and Latham, P. E. (2010). Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature, 466(7302):123-127.
[50]
Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2011). Empirical models of spiking in neural populations. Advances in neural information processing systems, 24.
[51]
Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate point process. Advances in neural information processing systems, 30.
[52]
Mensi, S., Naud, R., and Gerstner, W. (2011). From stochastic nonlinear integrate-and-fire to generalized linear models. Advances in Neural Information Processing Systems, 24.
[53]
Mizuseki, K., Sirota, A., Pastalkova, E., and Buzsáki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron, 64(2):267-280.
[54]
Mizuseki, K., Sirota, A., Pastalkova, E., Diba, K., and Buzsáki, G. (2013). Multiple single unit recordings from different rat hippocampal and entorhinal regions while the animals were performing multiple behavioral tasks. CRCNS org.
[55]
Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log gaussian cox processes. Scandinavian journal of statistics, 25(3):451-482.
[56]
Moreno-Bote, R., Beck, J., Kanitscheider, I., Pitkow, X., Latham, P., and Pouget, A. (2014). Information-limiting correlations. Nature neuroscience, 17(10):1410.
[57]
Nagele, J., Herz, A. V., and Stemmler, M. B. (2020). Untethered firing fields and intermittent silences: Why grid-cell discharge is so variable. Hippocampus.
[58]
Nawrot, M. P., Boucsein, C., Molina, V. R., Riehle, A., Aertsen, A., and Rotter, S. (2008). Measurement of variability dynamics in cortical spike trains. Journal of neuroscience methods, 169(2):374-390.
[59]
Omi, T., Ueda, N., and Aihara, K. (2019). Fully neural network based model for general temporal point processes. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.
[60]
Orbán, G., Berkes, P., Fiser, J., and Lengyel, M. (2016). Neural variability and sampling-based probabilistic representations in the visual cortex. Neuron, 92(2):530-543.
[61]
Ostojic, S. (2011). Interspike interval distributions of spiking neurons driven by fluctuating inputs. Journal of neurophysiology, 106(1):361-373.
[62]
Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15(4):243-262.
[63]
Peyrache, A. and Buzsáki, G. (2015). Extracellular recordings from multi-site silicon probes in the anterior thalamus and subicular formation of freely moving mice. CRCNS.
[64]
Peyrache, A., Lacroix, M. M., Petersen, P. C., and Buzsáki, G. (2015). Internally organized mechanisms of the head direction sense. Nature neuroscience, 18(4):569-575.
[65]
Pillow, J. W. (2009). Time-rescaling methods for the estimation and assessment of non-poisson neural encoding models. In Advances in neural information processing systems, pages 1473-1481.
[66]
Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E., and Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207):995-999.
[67]
Ponce-Alvarez, A., Thiele, A., Albright, T. D., Stoner, G. R., and Deco, G. (2013). Stimulus-dependent variability and noise correlations in cortical mt neurons. Proceedings of the National Academy of Sciences, 110(32):13162-13167.
[68]
Rad, K. R. and Paninski, L. (2010). Efficient, adaptive estimation of two-dimensional firing rate surfaces via gaussian process methods. Network: Computation in Neural Systems, 21(3-4):142-168.
[69]
Ratnam, R. and Nelson, M. E. (2000). Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals. Journal of Neuroscience, 20(17):6672-6683.
[70]
Reich, D. S., Victor, J. D., Knight, B. W., Ozaki, T., and Kaplan, E. (1997). Response variability and timing precision of neuronal spike trains in vivo. Journal of neurophysiology, 77(5):2836-2841.
[71]
Sahin, I. (1993). A generalization of renewal processes. Operations research letters, 13(4):259-263.
[72]
Shchur, O., Gao, N., Biloš, M., and Günnemann, S. (2020). Fast and flexible temporal point processes with triangular maps. Advances in Neural Information Processing Systems, 33:73-84.
[73]
Shimazaki, H. and Shinomoto, S. (2007). A method for selecting the bin size of a time histogram. Neural computation, 19(6):1503-1527.
[74]
Shimokawa, T., Koyama, S., and Shinomoto, S. (2010). A characterization of the time-rescaled gamma process as a model for spike trains. Journal of computational neuroscience, 29(1-2):183-191.
[75]
Shinomoto, S., Miura, K., and Koyama, S. (2005). A measure of local variation of inter-spike intervals. Biosystems, 79(1-3):67-72.
[76]
Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2):149-172.
[77]
Song, S., Lee, J. A., Kiselev, I., Iyengar, V., Trapani, J. G., and Tania, N. (2018). Mathematical modeling and analyses of interspike-intervals of spontaneous activity in afferent neurons of the zebrafish lateral line. Scientific Reports, 8(1):1-14.
[78]
Stein, R. B., Gossen, E. R., and Jones, K. E. (2005). Neuronal variability: noise or part of the signal? Nature Reviews Neuroscience, 6(5):389-397.
[79]
Teh, Y. W. and Rao, V. (2011). Gaussian process modulated renewal processes. In Advances in Neural Information Processing Systems, pages 2474-2482.
[80]
Titsias, M. and Lawrence, N. D. (2010). Bayesian gaussian process latent variable model. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pages 844-851.
[81]
Truccolo, W. (2016). From point process observations to collective neural dynamics: Nonlinear hawkes process glms, low-dimensional dynamics and coarse graining. Journal of Physiology-Paris, 110(4):336-347.
[82]
Truccolo, W. and Donoghue, J. P. (2007). Nonparametric modeling of neural point processes via stochastic gradient boosting regression. Neural computation, 19(3):672-705.
[83]
Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of neurophysiology, 93(2):1074-1089.
[84]
Ujfalussy, B. B. and Orbán, G. (2022). Sampling motion trajectories during hippocampal theta sequences. Elife, 11:e74058.
[85]
Weber, A. I. and Pillow, J. W. (2017). Capturing the dynamical repertoire of single neurons with generalized linear models. Neural computation, 29(12):3260-3289.
[86]
Williams, A. H., Poole, B., Maheswaranathan, N., Dhawale, A. K., Fisher, T., Wilson, C. D., Brann, D. H., Trautmann, E. M., Ryu, S., Shusterman, R., et al. (2020). Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping. Neuron, 105(2):246-259.
[87]
Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning, volume 2. MIT press Cambridge, MA.
[88]
Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. (2020). Efficiently sampling functions from gaussian process posteriors. In International Conference on Machine Learning, pages 10292-10302. PMLR.
[89]
Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2021). Pathwise conditioning of gaussian processes. The Journal of Machine Learning Research, 22(1):4741-4787.
[90]
Xiao, S., Yan, J., Yang, X., Zha, H., and Chu, S. (2017). Modeling the intensity function of point process via recurrent neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31.
[91]
Yang, R., Gupta, G., and Bogdan, P. (2019). Data-driven perception of neuron point process with unknown unknowns. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages 259-269.
[92]
Yousefi, A., Amidi, Y., Nazari, B., and Eden, U. T. (2020). Assessing goodness-of-fit in marked point process models of neural population coding via time and rate rescaling. Neural Computation, 32(11):2145-2186.
[93]
Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S., Shenoy, K. V., and Sahani, M. (2008). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. Advances in neural information processing systems, 21:1881-1888.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS '23: Proceedings of the 37th International Conference on Neural Information Processing Systems
December 2023
80772 pages

Publisher

Curran Associates Inc.

Red Hook, NY, United States

Publication History

Published: 30 May 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media