Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/3600270.3601514guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
research-article

Inference and sampling for archimax copulas

Published: 03 April 2024 Publication History

Abstract

Understanding multivariate dependencies in both the bulk and the tails of a distribution is an important problem for many applications, such as ensuring algorithms are robust to observations that are infrequent but have devastating effects. Archimax copulas are a family of distributions endowed with a precise representation that allows simultaneous modeling of the bulk and the tails of a distribution. Rather than separating the two as is typically done in practice, incorporating additional information from the bulk may improve inference of the tails, where observations are limited. Building on the stochastic representation of Archimax copulas, we develop a non-parametric inference method and sampling algorithm. Our proposed methods, to the best of our knowledge, are the first that allow for highly flexible and scalable inference and sampling algorithms, enabling the increased use of Archimax copulas in practical settings. We experimentally compare to state-of-the-art density modeling techniques, and the results suggest that the proposed method effectively extrapolates to the tails while scaling to higher dimensional data. Our findings suggest that the proposed algorithms can be used in a variety of applications where understanding the interplay between the bulk and the tails of a distribution is necessary, such as healthcare and safety.

Supplementary Material

Additional material (3600270.3601514_supp.pdf)
Supplemental material.

References

[1]
Michaël Allouche, Stéphane Girard, and Emmanuel Gobet. EV-GAN: Simulation of extreme events with relu neural networks. Journal of Machine Learning Research, 23(150):1-39, 2022. URL http://jmlr.org/papers/v23/21-0663.html.
[2]
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, pages 214-223. PMLR, 2017.
[3]
Tomá Bacigál, Vladimír Jágr, and Radko Mesiar. Non-exchangeable random variables, Archimax copulas and their fitting to real data. Kybernetika, 47(4):519-531, 2011.
[4]
Philippe Barbe, Christian Genest, Kilani Ghoudi, and Bruno Rémillard. On Kendall's process. Journal of Multivariate Analysis, 58(2):197-229, 1996.
[5]
Léo R. Belzile and Johanna G. Nelehová. Extremal attractors of Liouville copulas. Journal of Multivariate Analysis, 160:68-92, 2017. ISSN 0047-259X. URL https://www.sciencedirect.com/science/article/pii/S0047259X17300453.
[6]
Siddharth Bhatia, Arjit Jain, and Bryan Hooi. Exgan: Adversarial generation of extreme samples. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6750-6758, 2021.
[7]
Younes Boulaguiem, Jakob Zscheischler, Edoardo Vignotto, Karin van der Wiel, and Sebastian Engelke. Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks. Environmental Data Science, 1:e5, 2022.
[8]
Mary Ann Branch, Thomas F. Coleman, and Yuying Li. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM Journal on Scientific Computing, 21(1):1-23, 1999. URL https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html.
[9]
T. A. Buishand, L. de Haan, and C. Zhou. On spatial extremes: With application to a rainfall problem. The Annals of Applied Statistics, 2(2):624-642, 2008. ISSN 19326157. URL http://www.jstor.org/stable/30244220.
[10]
P. Capéraà, A.-L. Fougères, and C. Genest. A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84(3):567-577, 09 1997.
[11]
Philippe Capéraà, Anne-Laure Fougères, and Christian Genest. Bivariate distributions with given extreme value attractor. Journal of Multivariate Analysis, 72(1):30-49, 2000.
[12]
Bo Chang, Shenyi Pan, and Harry Joe. Vine copula structure learning via monte carlo tree search. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine Learning Research, pages 353-361. PMLR, 16-18 Apr 2019. URL https://proceedings.mlr.press/v89/chang19a.html.
[13]
Yale Chang, Yi Li, Adam Ding, and Jennifer Dy. A robust-equitable copula dependence measure for feature selection. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pages 84-92, Cadiz, Spain, 09-11 May 2016. PMLR. URL https://proceedings.mlr.press/v51/chang16.html.
[14]
A. Charpentier, A.-L. Fougères, C. Genest, and J.G. Nelehová. Multivariate Archimax copulas. Journal of Multivariate Analysis, 126:118-136, 2014.
[15]
Arthur Charpentier, Jean-David Fermanian, and Olivier Scaillet. The estimation of copulas: Theory and practice. Copulas: From theory to application in finance, pages 35-64, 2007.
[16]
Simon Chatelain, Anne-Laure Fougères, and Johanna G. Nelehová. Inference for Archimax copulas. The Annals of Statistics, 48(2):1025 - 1051, 2020.
[17]
Pawel Chilinski and Ricardo Silva. Neural likelihoods via cumulative distribution functions. In Jonas Peters and David Sontag, editors, Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning Research, pages 420-429. PMLR, 03-06 Aug 2020. URL http://proceedings.mlr.press/v124/chilinski20a.html.
[18]
Stuart G. Coles and Jonathan A. Tawn. Modelling extreme multivariate events. Journal of the Royal Statistical Society. Series B (Methodological), 53(2):377-392, 1991. ISSN 00359246. URL http://www.jstor.org/stable/2345748.
[19]
Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53-65, 2018.
[20]
Ruifei Cui, Perry Groot, Moritz Schauer, and Tom Heskes. Learning the causal structure of copula models with latent variables. In UAI. Corvallis: AUAI Press, 2018.
[21]
Data to AI Lab at MIT. Copulas. URL https://github.com/sdv-dev/Copulas.
[22]
L. De Haan. A Spectral Representation for Max-stable Processes. The Annals of Probability, 12(4):1194-1204, 1984.
[23]
Stefano Demarta and Alexander J. McNeil. The t copula and related copulas. International Statistical Review / Revue Internationale de Statistique, 73(1):111-129, 2005. ISSN 03067734, 17515823. URL http://www.jstor.org/stable/25472643.
[24]
Alexandre Drouin, Étienne Marcotte, and Nicolas Chapados. TACTiS: Transformer-attentional copulas for time series. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 5447-5493. PMLR, 17-23 Jul 2022. URL https://proceedings.mlr.press/v162/drouin22a.html.
[25]
Elad Eban, Gideon Rothschild, Adi Mizrahi, Israel Nelken, and Gal Elidan. Dynamic copula networks for modeling real-valued time series. In Artificial Intelligence and Statistics, pages 247-255. PMLR, 2013.
[26]
Gal Elidan. Copula bayesian networks. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23, pages 559-567. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper/2010/file/2a79ea27c279e471f4d180b08d62b00a-Paper.pdf.
[27]
Gal Elidan. Inference-less density estimation using copula bayesian networks. In UAI, 2010.
[28]
Gal Elidan. Copula network classifiers (cncs). In Artificial intelligence and statistics, pages 346-354. PMLR, 2012.
[29]
Michael Falk, Simone A. Padoan, and Florian Wisheckel. Generalized pareto copulas: A key to multivariate extremes. Journal of Multivariate Analysis, 174:104538,2019. ISSN 0047-259X. URL https://www.sciencedirect.com/science/article/pii/S0047259X19300296.
[30]
Amélie Fils-Villetard, Armelle Guillou, and Johan Segers. Projection estimators of pickands dependence functions. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 36(3):369-382, 2008. ISSN 03195724. URL http://www.jstor.org/stable/41219865.
[31]
Anne-Laure Fougères, Cécile Mercadier, and John Nolan. Dense classes of multivariate extreme value distributions. Journal of Multivariate Analysis, 116:109-129, 2013. ISSN 0047-259X. URL https://www.sciencedirect.com/science/article/pii/S0047259X12002746.
[32]
Christian Genest and Anne-Catherine Favre. Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4):347-368, 2007. URL https://ascelibrary.org/doi/abs/10.1061//28ASCE/291084-0699/282007/2912/3A4/28347/29.
[33]
Christian Genest and Louis-Paul Rivest. Statistical inference procedures for bivariate archimedean copulas. Journal of the American Statistical Association, 88(423):1034-1043, 1993.
[34]
Christian Genest, Johanna Neslehová, and Johanna Ziegel. Inference in multivariate archimedean copula models. TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, 20(2):223, 2011.
[35]
Jan Górecki and Malte S. Kurz. The HACopula toolbox. URL https://github.com/gorecki/HACopula.
[36]
Jan Górecki, Marius Hofert, and Martin Holea. On structure, family and parameter estimation of hierarchical archimedean copulas. Journal of Statistical Computation and Simulation, 87 (17):3261-3324, 2017.
[37]
Shaobo Han, Xuejun Liao, David Dunson, and Lawrence Carin. Variational Gaussian copula inference. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pages 829-838, Cadiz, Spain, 09-11 May 2016. PMLR. URL https://proceedings.mlr.press/v51/han16.html.
[38]
Ali Hasan, Khalil Elkhalil, Yuting Ng, João M Pereira, Sina Farsiu, Jose Blanchet, and Vahid Tarokh. Modeling extremes with d-max-decreasing neural networks. In The 38th Conference on Uncertainty in Artificial Intelligence, 2022.
[39]
José Miguel Hernández-Lobato, James R Lloyd, and Daniel Hernández-Lobato. Gaussian process conditional copulas with applications to financial time series. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/67d16d00201083a2b118dd5128dd6f59-Paper.pdf.
[40]
Marcel Hirt, Petros Dellaportas, and Alain Durmus. Copula-like variational inference. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/e721a54a8cf18c8543d44782d9ef681f-Paper.pdf.
[41]
Marius Hofert, Martin Mächler, and Alexander J. McNeil. Archimedean Copulas in High Dimensions: Estimators and Numerical Challenges Motivated by Financial Applications. Journal de la société française de statistique, 154(1):25-63, 2013. URL http://www.numdam.org/item/JSFS_2013_154_1_25_0/.
[42]
Marius Hofert, Raphaël Huser, and Avinash Prasad. Hierarchical Archimax copulas. Journal of Multivariate Analysis, 167:195-211, 2018.
[43]
Jim Huang and Brendan J Frey. Structured ranking learning using cumulative distribution networks. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems, volume 21. Curran Associates, Inc., 2008. URL https://proceedings.neurips.cc/paper/2008/file/03c6b06952c750899bb03d998e631860-Paper.pdf.
[44]
Jim Huang and Nebojsa Jojic. Maximum-likelihood learning of cumulative distribution functions on graphs. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages 342-349, Chia Laguna Resort, Sardinia, Italy, 13-15 May 2010. PMLR. URL https://proceedings.mlr.press/v9/huang10b.html.
[45]
Jim C. Huang and Brendan J. Frey. Cumulative distribution networks and the derivative-sum-product algorithm. In Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI'08, page 290297, Arlington, Virginia, USA, 2008. AUAI Press. ISBN 0974903949.
[46]
Jim C. Huang and Brendan J. Frey. Cumulative distribution networks and the derivative-sum-product algorithm: Models and inference for cumulative distribution functions on graphs. Journal of Machine Learning Research, 12(10):301-348, 2011.
[47]
Xu Huang. Statistics of bivariate extreme values. PhD, Tinbergen Institute, 1992.
[48]
Tim Janke, Mohamed Ghanmi, and Florian Steinke. Implicit generative copulas. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 26028-26039. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/dac4a67bdc4a800113b0f1ad67ed696f-Paper.pdf.
[49]
Piotr Jaworski, Fabrizio Durante, Wolfgang Karl Hardle, and Tomasz Rychlik, editors. Copula theory and its applications. Lecture notes in statistics. Springer, Berlin, Germany, 2010 edition, July 2010.
[50]
Piotr Jaworski, Fabrizio Durante, and Wolfgang Karl Hardle, editors. Copulae in mathematical and quantitative finance. Lecture notes in statistics. Springer, Berlin, Germany, 2013 edition, June 2013.
[51]
Harry Joe. Dependence modeling with copulas. Chapman and Hall/CRC, June 2014. ISBN 9781466583238. URL https://www.taylorfrancis.com/books/9781466583238.
[52]
Nebojsa Jojic, Chris Meek, and Jim Huang. Exact inference and learning for cumulative distribution functions on loopy graphs. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23, pages 874-882. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper/2010/file/705f2172834666788607efbfca35afb3-Paper.pdf.
[53]
Sanket Kamthe, Samuel Assefa, and Marc Deisenroth. Copula flows for synthetic data generation, 2021. URL https://arxiv.org/abs/2101.00598.
[54]
Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International Conference on Learning Representations, 2014.
[55]
Ivan Kojadinovic, Johan Segers, and Jun Yan. Large-sample tests of extreme-value dependence for multivariate copulas. LIDAM Reprints ISBA 2011025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA), 2011. URL https://EconPapers.repec.org/RePEc:aiz:louvar:2011025.
[56]
Tõnu Kollo and Gaida Pettere. Parameter estimation and application of the multivariate skew t-copula. In Piotr Jaworski, Fabrizio Durante, Wolfgang Karl Härdle, and Tomasz Rychlik, editors, Copula Theory and Its Applications, pages 289-298, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
[57]
Yves-Laurent Kom Samo. Inductive mutual information estimation: A convex maximum-entropy copula approach. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages 2242-2250. PMLR, 13-15 Apr 2021. URL https://proceedings.mlr.press/v130/kom-samo21a.html.
[58]
Eric Landgrebe, Madeleine Udell, et al. Online mixed missing value imputation using Gaussian copula. In Workshop on the Art of Learning with Missing Values (Artemiss) hosted by the 37th International Conference on Machine Learning (ICML), 2020.
[59]
Mike Laszkiewicz, Johannes Lederer, and Asja Fischer. Copula-based normalizing flows. In ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 2021. URL https://openreview.net/forum?id=T4Wf0w2jcz.
[60]
Charline Le Lan and Laurent Dinh. Perfect density models cannot guarantee anomaly detection. Entropy, 23(12):1690, 2021.
[61]
Benjamin Letham, Wei Sun, and Anshul Sheopuri. Latent variable copula inference for bundle pricing from retail transaction data. In ICML, pages 217-225, 2014. URL http://proceedings.mlr.press/v32/letham14.html.
[62]
Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. Copod: copula-based outlier detection. In 2020 IEEE International Conference on Data Mining (ICDM), pages 1118-1123. IEEE, 2020.
[63]
Chun Kai Ling, Fei Fang, and J. Zico Kolter. Deep archimedean copulas. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 1535-1545. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/10eb6500bd1e4a3704818012a1593cc3-Paper.pdf.
[64]
Weiwei Liu. Copula multi-label learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/5d2c2cee8ab0b9a36bd1ed7196bd6c4a-Paper.pdf.
[65]
David Lopez-paz, Jose Hernändez-lobato, and Bernhard Schölkopf. Semi-supervised domain adaptation with non-parametric copulas. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/8e98d81f8217304975ccb23337bb5761-Paper.pdf.
[66]
David Lopez-Paz, Jose Miguel Hernández-Lobato, and Ghahramani Zoubin. Gaussian process vine copulas for multivariate dependence. In International Conference on Machine Learning, pages 10-18. PMLR, 2013.
[67]
Jian Ma and Zengqi Sun. Mutual information is copula entropy. Tsinghua Science and Technology, 16(1):51-54, 2011.
[68]
Jiaqi Ma, Bo Chang, Xuefei Zhang, and Qiaozhu Mei. Copulagnn: Towards integrating representational and correlational roles of graphs in graph neural networks. In International Conference on Learning Representations, 2021.
[69]
Jan-Frederik Mai and Matthias Scherer. Simulating Copulas. WORLD SCIENTIFIC, 2nd edition, 2017. URL https://www.worldscientific.com/doi/abs/10.1142/10265.
[70]
Bijan Mazaheri, Siddharth Jain, and Jehoshua Bruck. Robust correction of sampling bias using cumulative distribution functions. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 3546-3556. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/24368c745de15b3d2d6279667debcba3-Paper.pdf.
[71]
Alexander J McNeil and Johanna Neslehova. From Archimedean to Liouville copulas. Journal of Multivariate Analysis, 101(8):1772-1790, 2010.
[72]
Alexander J. McNeil and Johanna Nelehová. Multivariate Archimedean copulas, d-monotone functions and /1-norm symmetric distributions. The Annals of Statistics, 37(5B):3059 - 3097, 2009.
[73]
Radko Mesiar and Vladimír Jágr. d-dimensional dependence functions and Archimax copulas. Fuzzy Sets and Systems, 228:78-87, 2013.
[74]
Roger B. Nelsen. An introduction to Copulas. Springer series in statistics. Springer New York, New York, NY, 2. ed. 2006. corr. 2. pr. softcover version of original hardcover edition 2006 edition, 2010. ISBN 9780387286785 9781441921093. OCLC: 700190717.
[75]
Yuting Ng, Ali Hasan, Khalil Elkhalil, and Vahid Tarokh. Generative Archimedean copulas. In 37th Conference on Uncertainty in Artificial Intelligence (UAI), 2021.
[76]
Georg Ostrovski, Will Dabney, and Rémi Munos. Autoregressive quantile networks for generative modeling. In ICML, pages 3933-3942, 2018. URL http://proceedings.mlr.press/v80/ostrovski18a.html.
[77]
George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. Advances in neural information processing systems, 30, 2017.
[78]
George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research, 22(57):1-64, 2021.
[79]
James Pickands. Multivariate extreme value distribution. In 43rd Session of the International Statistical Institution, volume 2, pages 859-878,894-902, Buenos Aires, 1981.
[80]
Barnabás Póczos, Zoubin Ghahramani, and Jeff Schneider. Copula-based kernel dependency measures. In Proceedings of the 29th International Conference on International Conference on Machine Learning, ICML'12, page 16351642, Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851.
[81]
Bruno Remillard and Olivier Scaillet. Testing for equality between two copulas. 8: 229-231, june 2007. URL https://ssrn.com/abstract=1014550.
[82]
Paul Ressel. Homogeneous distributionsand a spectral representation of classical mean values and stable tail dependence functions. Journal of Multivariate Analysis, 117:246-256, 2013.
[83]
David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-dimensional multivariate forecasting with low-rank Gaussian copula processes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/0b105cf1504c4e241fcc6d519ea962fb-Paper.pdf.
[84]
David Salinas, Huibin Shen, and Valerio Perrone. A quantile-based approach for hyperparameter transfer learning. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 8438-8448. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/salinas20a.html.
[85]
Ricardo Silva, Charles Blundell, and Yee Whye Teh. Mixed cumulative distribution networks. In Geoffrey Gordon, David Dunson, and Miroslav Dudik, editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 670-678, Fort Lauderdale, FL, USA, 11-13 Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/silva11a.html.
[86]
Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. 8:229-231, 1959.
[87]
Michael S. Smith, Quan Gan, and Robert J. Kohn. Modelling dependence using skew t copulas: Bayesian inference and applications. Journal of Applied Econometrics, 27(3):500-522, 2012. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jae.1215.
[88]
Natasa Tagasovska, Damien Ackerer, and Thibault Vatter. Copulas as high-dimensional generative models: Vine copula autoencoders. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/15e122e839dfdaa7ce969536f94aecf6-Paper.pdf.
[89]
Yaniv Tenzer and Gal Elidan. Speedy model selection (sms) for copula models. In UAI, 2013.
[90]
Yaniv Tenzer and Gal Elidan. Helm: Highly efficient learning of mixed copula networks. In UAI, pages 790-799, 2014.
[91]
Dustin Tran, David Blei, and Edo M Airoldi. Copula variational inference. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/e4dd5528f7596dcdf871aa55cfccc53c-Paper.pdf.
[92]
USDA. Dataset: CSFII 1985, continuing survey of food intakes by individuals, women 19-50 years of age and their children 1-5 years of age, 6 waves, 1985. Dataset, U.S. Department of Agriculture, Agriculture Research Service, 1985. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/8586/csfii85_6waves_doc.pdf, https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/csfii-1985-1986/.
[93]
Hongwei Wang, Lantao Yu, Zhangjie Cao, and Stefano Ermon. Multi-agent imitation learning with copulas. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 139-156. Springer, 2021.
[94]
Huahua Wang, Farideh Fazayeli, Soumyadeep Chatterjee, and Arindam Banerjee. Gaussian Copula Precision Estimation with Missing Values. In Samuel Kaski and Jukka Corander, editors, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning Research, pages 978-986, Reykjavik, Iceland, 22-25 Apr 2014. PMLR. URL https://proceedings.mlr.press/v33/wang14a.html.
[95]
Ruofeng Wen and Kari Torkkola. Deep generative quantile-copula models for probabilistic forecasting. In ICML, 2019.
[96]
Mario Wieser, Aleksander Wieczorek, Damian Murezzan, and Volker Roth. Learning sparse latent representations with the deep copula information bottleneck. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=Hk0wHx-RW.
[97]
R. E. Williamson. Multiply monotone functions and their Laplace transforms. Duke Mathematical Journal, 23(2):189 - 207, 1956.
[98]
Andrew G Wilson and Zoubin Ghahramani. Copula processes. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems, volume 23, pages 2460-2468. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper/2010/file/fc8001f834f6a5f0561080d134d53d29-Paper.pdf.
[99]
Toshinao Yoshiba. Maximum likelihood estimation of skew-t copulas with its applications to stock returns. Journal of Statistical Computation and Simulation, 88(13):2489-2506, 2018.
[100]
Yuxuan Zhao and Madeleine Udell. Matrix completion with quantified uncertainty through low rank Gaussian copula. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 20977-20988. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/fileZf076073b2082f8741a9cd07b789c77a0-Paper.pdf.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS '22: Proceedings of the 36th International Conference on Neural Information Processing Systems
November 2022
39114 pages

Publisher

Curran Associates Inc.

Red Hook, NY, United States

Publication History

Published: 03 April 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Sep 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media