Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2050461.2050498guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Towards a practical approach to discover internal dependencies in rule-based knowledge bases

Published: 09 October 2011 Publication History

Abstract

In this paper, we intend to introduce the conception of discovering the knowledge about rules saved in large rule-based knowledge bases, both generated automatically and acquired from human experts in the classical way. This paper presents a preliminary study of a new project in which we are going to join the two approaches: the hierarchical decomposition of large rule bases using cluster analysis and the decision units conception. Our goal is to discover useful, potentially implicit and directly unreadable information from large rule sets.

References

[1]
Frawley, W., Piatetsky-Shapiro, G., Matheus, C.: Knowledge Discovery in Databases: An Overview. AI Magazine, 213-228 (Fall 1992).
[2]
Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001).
[3]
Nguyen, H.S., Skowron, A.: Rough Set Approach to KDD (Extended Abstract). In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 19-20. Springer, Heidelberg (2008).
[4]
Skowron, A., Komorowski, H.J., Pawlak, Z., Polkowski, L.T.: A rough set perspective on data and knowledge. In: Handbook of Data Mining and Knowledge Discovery, pp. 134-149. Oxford University Press, Oxford (2002).
[5]
Moshkov, M., Skowron, A., Suraj, Z.: On Minimal Rule Sets for Almost All Binary Information Systems. Fundamenta Informaticae 80 (2007).
[6]
Nowak, A., Siminski, R., Wakulicz-Deja, A.: Towards modular representation of knowledge base. In: Advances in Soft Computing, pp. 421-428. Physica-Verlag, Springer Verlag Company, Heidelberg (2006).
[7]
Nowak, A., Siminski, R., Wakulicz-Deja, A.: Two-way optimizations of inference for rule knowledge bases. In: Proceedings of International Conference CSP 2008, Concurrency, Specification And Programming, September 29-October 1, vol. 3, pp. 398-409. Humboldt-Universität, Berlin (2008).
[8]
Nowak, A., Wakulicz-Deja, A.: The way of rules representation in composited knowledge bases. In: Advanced In Intelligent and Soft Computing, Man - Machine Interactions, pp. 175-182. Springer, Heidelberg (2009).
[9]
Nowak-Brzezinska, A., Jach, T., Xieski, T.: Wybór algorytmu grupowania a efektywnosc wyszukiwania dokumentów. Studia Informatica, Zeszyty Naukowe Politechniki Slaskiej 31(2A(89)), 147-162 (2010).
[10]
Siminski, R., Wakulicz-Deja, A.: Verification of Rule Knowledge Bases Using Decision Units. In: Advances in Soft Computing, Intelligent Information Systems, pp. 185-192. Physica Verlag, Springer Verlag Company, Heidelberg (2000).
[11]
Siminski, R., Wakulicz-Deja, A.: Decision units as a tool for rule base modeling and verification. In: Advances in Soft Computing, Information Processing and Web Mining, pp. 553-556. Springer Verlag Company, Heidelberg (2003).
[12]
Siminski, R.: Decision units approach in knowledge base modeling. In: Recent Advances in Intelligent Information Systems, pp. 597-606. Academic Publishing House EXIT, New Jersey (2009).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
RSKT'11: Proceedings of the 6th international conference on Rough sets and knowledge technology
October 2011
771 pages
ISBN:9783642244247
  • Editors:
  • JingTao Yao,
  • Sheela Ramanna,
  • Guoyin Wang,
  • Zbigniew Suraj

Sponsors

  • RS: Rough Sets
  • SCSOCAAI: Soft Computation Society of the Chinese Association for Artificial Intelligence
  • IRSS: International Rough Set Society
  • UOC: University of Calgary
  • University of Regina

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 09 October 2011

Author Tags

  1. cluster analysis
  2. data mining
  3. decision unit
  4. inference
  5. rule knowledge bases

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Nov 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media