Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2042620.2042673guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A multiple Kernel learning algorithm for cell nucleus classification of renal cell carcinoma

Published: 14 September 2011 Publication History

Abstract

We consider a Multiple Kernel Learning (MKL) framework for nuclei classification in tissue microarray images of renal cell carcinoma. Several features are extracted from the automatically segmented nuclei and MKL is applied for classification. We compare our results with an incremental version of MKL, support vector machines with single kernel (SVM) and voting. We demonstrate that MKL inherently combines information from different input spaces and creates statistically significantly more accurate classifiers than SVMs and voting for renal cell carcinoma detection.

References

[1]
Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, Banff, Alberta, Canada, pp. 41-48 (2004).
[2]
Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401-408. ACM, New York (2007).
[3]
Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1222-1239 (2001).
[4]
Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1-8. Springer, Heidelberg (2008).
[5]
Gönen, M., Alpaydin, E.: Localized multiple kernel learning. In: Proceedings of the International Conference on Machine Learning, ICML 2008, pp. 352-359 (2008).
[6]
Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab, 993475 (2003).
[7]
Kononen, J., Bubendorf, L., et al.: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4(7), 844-847 (1998).
[8]
Kuncheva, L.I.: Combining pattern classifiers: methods and algorithms. Wiley Interscience, Hoboken (2004).
[9]
Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, 27-72 (2004).
[10]
Lee, W.-J., Verzakov, S., Duin, R.P. W.: Kernel combination versus classifier combination. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 22-31. Springer, Heidelberg (2007).
[11]
Moguerza, J.M., Muñoz, A., de Diego, I.M.n.: Improving support vector classification via the combination of multiple sources of information. In: Fred, A., Caelli, T.M., Duin, R.P. W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 592-600. Springer, Heidelberg (2004).
[12]
Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6(1), 63-81 (2005).
[13]
Schüffler, P.J., Fuchs, T.J., Ong, C.S., Roth, V., Buhmann, J.M.: Computational TMA analysis and cell nucleus classification of renal cell carcinoma. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 202-211. Springer, Heidelberg (2010).
[14]
Ulas, A., Semerci, M., Yildiz, O.T., Alpaydin, E.: Incremental construction of classifier and discriminant ensembles. Information Sciences 179(9), 1298-1318 (2009).
[15]
Vapnik, V.N.: Statistical learning theory. John Wiley and Sons, Chichester (1998).

Cited By

View all
  • (2011)Renal cancer cell classification using generative embeddings and information theoretic kernelsProceedings of the 6th IAPR international conference on Pattern recognition in bioinformatics10.5555/2075619.2075628(75-86)Online publication date: 2-Nov-2011
  1. A multiple Kernel learning algorithm for cell nucleus classification of renal cell carcinoma

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        ICIAP'11: Proceedings of the 16th international conference on Image analysis and processing: Part I
        September 2011
        709 pages
        ISBN:9783642240843
        • Editors:
        • Giuseppe Maino,
        • Gian Luca Foresti

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 14 September 2011

        Author Tags

        1. MKL
        2. SVM
        3. renal cell carcinoma

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2011)Renal cancer cell classification using generative embeddings and information theoretic kernelsProceedings of the 6th IAPR international conference on Pattern recognition in bioinformatics10.5555/2075619.2075628(75-86)Online publication date: 2-Nov-2011

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media