Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2999611.2999636guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
Article

Scalable kernels for graphs with continuous attributes

Published: 05 December 2013 Publication History

Abstract

While graphs with continuous node attributes arise in many applications, state-of-the-art graph kernels for comparing continuous-attributed graphs suffer from a high runtime complexity. For instance, the popular shortest path kernel scales as O(n4), where n is the number of nodes. In this paper, we present a class of graph kernels with computational complexity O(n2(m + log n + δ2 + d)), where δ is the graph diameter, m is the number of edges, and d is the dimension of the node attributes. Due to the sparsity and small diameter of real-world graphs, these kernels typically scale comfortably to large graphs. In our experiments, the presented kernels outperform state-of-the-art kernels in terms of speed and accuracy on classification benchmark datasets.

References

[1]
N. Shervashidze, S.V.N. Vishwanathan, T. Petri, K. Mehlhorn, and K.M. Borgwardt. Efficient graphlet kernels for large graph comparison. JMLR, 5:488-195, 2009.
[2]
N. Shervashidze, P. Schweitzer, E.J. van Leeuwen, K. Mehlhorn, and K.M. Borgwardt. Weisfeiler-Lehman graph kernels. JMLR, 12:2539-2561, 2011.
[3]
D. Haussler. Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz, 1999.
[4]
M. Collins and N. Duffy. Convolution kernels for natural language. In NIPS, pages 625-632, 2001.
[5]
S.V.N. Vishwanathan and A.J. Smola. Fast kernels for string and tree matching. In NIPS, pages 569-576, 2002.
[6]
C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theory and algorithms. JMLR, 5:1035-1062, 2004.
[7]
D. Kimura and H. Kashima. Fast computation of subpath kernel for trees. In ICML, 2012.
[8]
P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules. Machine Learning, 75:3-35, 2009.
[9]
H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In ICML, pages 321-328, 2003.
[10]
T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In Learning Theory and Kernel Machines, volume 2777 of LNCS, pages 129-143, 2003.
[11]
S.V.N. Vishwanathan, N.N. Schraudolph, R.I. Kondor, and K.M. Borgwardt. Graph kernels. JMLR, 11:1201-1242, 2010.
[12]
F.R. Bach. Graph kernels between point clouds. In ICML, pages 25-32, 2008.
[13]
P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized graph kernels. In ICML, 2004.
[14]
N. Kriege and P. Mutzel. Subgraph matching kernels for attributed graphs. In ICML, 2012.
[15]
B. Gaüzère, L. Brun, and D. Villemin. Two new graphs kernels in chemoinformatics. Pattern Recognition Letters, 15:2038-2047, 2012.
[16]
M. Neumann, N. Patricia, R. Garnett, and K. Kersting. Efficient graph kernels by randomization. In ECML/PKDD (1), pages 378-393, 2012.
[17]
K.M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. ICDM, 2005.
[18]
T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.
[19]
A. Feragen, J. Petersen, D. Grimm, A. Dirksen, J.H. Pedersen, K. Borgwardt, and M. de Bruijne. Geometric tree kernels: Classification of COPD from airway tree geometry. In IPMI 2013, 2013.
[20]
N. Shervashidze. Graph kernels code, http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/Graphkernels/.
[21]
D. Gleich. MatlabBGL http://dgleich.github.io/matlab-bgl/.
[22]
I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, and D. Schomburg. Brenda, the enzyme database: updates and major new developments. Nucleic Acids Research, 32:431-433, 2004.
[23]
P.D. Dobson and A.J. Doig. Distinguishing enzyme structures from non-enzymes without alignments. Journal of Molecular Biology, 330(4):771-783, 2003.
[24]
K.M. Borgwardt, C.S. Ong, S. Schonauer, S.V.N. Vishwanathan, A.J. Smola, and H.-P. Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):i47-i56, 2005.
[25]
J. Pedersen, H. Ashraf, A. Dirksen, K. Bach, H. Hansen, P. Toennesen, H. Thorsen, J. Brodersen, B. Skov, M. Døssing, J. Mortensen, K. Richter, P. Clementsen, and N. Seersholm. The Danish randomized lung cancer CT screening trial - overall design and results of the prevalence round. J Thorac Oncol, 4(5):608-614, May 2009.
[26]
J. Petersen, M. Nielsen, P. Lo, Z. Saghir, A. Dirksen, and M. de Bruijne. Optimal graph based segmentation using flow lines with application to airway wall segmentation. In IPMI, LNCS, pages 49-60, 2011.
[27]
C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans. Int. Syst. and Tech., 2:27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cited By

View all
  • (2023)Scalable Program Clone Search through Spectral AnalysisProceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering10.1145/3611643.3616279(808-820)Online publication date: 30-Nov-2023
  • (2022)Graph KernelsJournal of Artificial Intelligence Research10.1613/jair.1.1322572(943-1027)Online publication date: 4-Jan-2022
  • (2019)Learning Interpretable Metric between GraphsProceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining10.1145/3292500.3330845(1026-1036)Online publication date: 25-Jul-2019
  • Show More Cited By
  1. Scalable kernels for graphs with continuous attributes

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    NIPS'13: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1
    December 2013
    3236 pages

    Publisher

    Curran Associates Inc.

    Red Hook, NY, United States

    Publication History

    Published: 05 December 2013

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Scalable Program Clone Search through Spectral AnalysisProceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering10.1145/3611643.3616279(808-820)Online publication date: 30-Nov-2023
    • (2022)Graph KernelsJournal of Artificial Intelligence Research10.1613/jair.1.1322572(943-1027)Online publication date: 4-Jan-2022
    • (2019)Learning Interpretable Metric between GraphsProceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining10.1145/3292500.3330845(1026-1036)Online publication date: 25-Jul-2019
    • (2019)Predicting the global structure of indoor environmentsAutonomous Robots10.1007/s10514-018-9732-743:4(813-835)Online publication date: 1-Apr-2019
    • (2018)Hierarchical graph representation learning with differentiable poolingProceedings of the 32nd International Conference on Neural Information Processing Systems10.5555/3327345.3327389(4805-4815)Online publication date: 3-Dec-2018
    • (2018)RetGKProceedings of the 32nd International Conference on Neural Information Processing Systems10.5555/3327144.3327311(3968-3978)Online publication date: 3-Dec-2018
    • (2018)Time Series Prediction for Graphs in Kernel and Dissimilarity SpacesNeural Processing Letters10.5555/3288065.328813848:2(669-689)Online publication date: 1-Oct-2018
    • (2018)Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease DiagnosisIEEE Transactions on Image Processing10.1109/TIP.2018.279970627:5(2340-2353)Online publication date: 1-May-2018
    • (2017)Graph Characterization by Counting Sink Star SubgraphsJournal of Mathematical Imaging and Vision10.1007/s10851-016-0686-057:3(439-454)Online publication date: 1-Mar-2017
    • (2016)The multiscale Laplacian Graph kernelProceedings of the 30th International Conference on Neural Information Processing Systems10.5555/3157382.3157432(2990-2998)Online publication date: 5-Dec-2016
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media