Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2951659.2951694guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

When Does Quasi-random Work?

Published: 13 September 2008 Publication History

Abstract

[10,22] presented various ways for introducing quasi-random numbers or derandomization in evolution strategies, with in some cases some spectacular claims on the fact that the proposed technique was always and for all criteria better than standard mutations. We here focus on the quasi-random trick and see to which extent this technique is efficient, by an in-depth analysis including convergence rates, local minima, plateaus, non-asymptotic behavior and noise. We conclude to the very stable, efficient and straightforward applicability of quasi-random numbers in continuous evolutionary algorithms.

References

[1]
Atanassov, E.I.: On the discrepancy of the halton sequences. Math. Balkanica 1812, 15---32 2004
[2]
Braaten, E., Weller, G.: An improved low-discrepancy sequence for multidimensional quasi-monte carlo integration. J. Comput. Phys. 33, 249---258 1979
[3]
Bratley, P., Fox, B.: Algorithm 659: Implementing sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 141, 88---100 1988
[4]
Cervellera, C., Muselli, M.: A deterministic learning approach based on discrepancy. In: Apolloni, B., Marinaro, M., Tagliaferri, R. eds. WIRN 2003. LNCS, vol. 2859, pp. 53---60. Springer, Heidelberg 2003
[5]
Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 136, 904---914 1976
[6]
Faure, H.: Good permutations for extreme discrepancy. J. Number Theory 42, 47---56 1992
[7]
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 111 2003
[8]
Hardy, G.H.: On double fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quart. J. Mathematics 37, 53---79 1905
[9]
Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299---322 1998
[10]
Kimura, S., Matsumura, K.: Genetic algorithms using low-discrepancy sequences. In: GECCO, pp. 1341---1346 2005
[11]
L'Ecuyer, P., Lemieux, C.: Recent Advances in Randomized Quasi-Monte Carlo Methods, pp. 419---474. Kluwer Academic Publishers, Dordrecht 2002
[12]
Mascagni, M., Chi, H.: On the scrambled halton sequence. Monte Carlo Methods Appl. 103, 435---442 2004
[13]
Morokoff, W.J., Caflish, R.E.: Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 156, 1251---1279 1994
[14]
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods 1992
[15]
Okten, G., Srinivasan, A.: Parallel quasi-monte carlo methods on a heterogeneous cluster. In: Niederreiter, H., Fang, K.-T., Hickernell, F.J. eds. Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 406---421. Springer, Heidelberg 2002
[16]
Owen, A.B.: Quasi-Monte Carlo Sampling, A Chapter on QMC for a SIGGRAPH 2003 course 2003
[17]
Sarkar, P.K., Prasad, M.A.: A comparative study of pseudo and quasi random sequences for the solution of integral equations. J. Computational Physics 68, 66---88 1978
[18]
Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? Journal of Complexity 141, 1---33 1998
[19]
Sobol, I.M.: On the systematic search in a hypercube. Siam journal on Numerical Analysis 165, 790---793 1979
[20]
Srinivasan, A.: Parallel and distributed computing issues in pricing financial derivatives through quasi-monte carlo. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium 2002
[21]
Teytaud, O., Gelly, S., Mary, J.: Active learning in regression, with application to stochastic dynamic programming. In: Proceedings of ICINCO 2007, pp. 47---54 2007
[22]
Teytaud, O., Gelly, S.: Dcma: yet another derandomization in covariance-matrix-adaptation. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 955---963. ACM Press, New York 2007
[23]
Tuffin, B.: On the use of low discrepancy sequences in monte carlo methods 1996
[24]
Tuffin, B.: A new permutation choice in halton sequences. Monte Carlo and Quasi-Monte Carlo 127, 427---435 1997
[25]
van der Corput, J.G.: Verteilungsfunktionen. Proc. Ned. Akad. v. Wet. 38, 813---821 1935
[26]
Vandewoestyne, B., Cools, R.: Good permutations for deterministic scrambled halton sequences in terms of l2-discrepancy. Computational and Applied Mathematics 1891,2, 341---361 2006
[27]
Wang, X., Hickernell, F.: Randomized halton sequences. Math. Comput. Modelling 32, 887---899 2000
[28]
Warnock, T.T.: Computational investigations of low-discrepancy point sets. In: Zaremba, S.K. ed. Applications of Number Theory to Numerical Analysis Proceedings of the Symposium. University of Montreal, pp. 319---343 1972
[29]
Warnock, T.T.: Computational investigations of low-discrepancy point sets ii. In: Niederreiter, H., Shiue, P.J.-S. eds. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Springer, Berlin 1995

Cited By

View all
  • (2016)QR Mutations Improve Many Evolution StrategiesProceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion10.1145/2908961.2909060(35-36)Online publication date: 20-Jul-2016
  • (2011)A rigorous runtime analysis for quasi-random restarts and decreasing stepsizeProceedings of the 10th international conference on Artificial Evolution10.1007/978-3-642-35533-2_4(37-48)Online publication date: 24-Oct-2011
  • (2010)Log(λ) modifications for optimal parallelismProceedings of the 11th international conference on Parallel problem solving from nature: Part I10.5555/1885031.1885059(254-263)Online publication date: 11-Sep-2010
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Proceedings of the 10th International Conference on Parallel Problem Solving from Nature --- PPSN X - Volume 5199
September 2008
1159 pages
ISBN:9783540876991
  • Editors:
  • Günter Rudolph,
  • Thomas Jansen,
  • Nicola Beume,
  • Simon Lucas,
  • Carlo Poloni

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 13 September 2008

Author Tags

  1. Derandomization
  2. Evolution Strategies

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2016)QR Mutations Improve Many Evolution StrategiesProceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion10.1145/2908961.2909060(35-36)Online publication date: 20-Jul-2016
  • (2011)A rigorous runtime analysis for quasi-random restarts and decreasing stepsizeProceedings of the 10th international conference on Artificial Evolution10.1007/978-3-642-35533-2_4(37-48)Online publication date: 24-Oct-2011
  • (2010)Log(λ) modifications for optimal parallelismProceedings of the 11th international conference on Parallel problem solving from nature: Part I10.5555/1885031.1885059(254-263)Online publication date: 11-Sep-2010
  • (2009)Closed-loop evolutionary multiobjective optimizationIEEE Computational Intelligence Magazine10.1109/MCI.2009.9330954:3(77-91)Online publication date: 1-Aug-2009

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media