Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

On the Theories of Triangular Sets

Published: 01 July 1999 Publication History

Abstract

Different notions of triangular sets are presented. The relationship between these notions are studied. The main result is that four different existing notions of good triangular sets are equivalent.

References

[1]
P. Aubry, M. Moreno Maza, Triangular sets for solving polynomial systems: a comparative implementation of four methods, J. Symb. Comput., 28 (1997) 125-154.
[2]
F. Boulier, D. Lazard, F. Ollivier, M. Petitot, Proceedings of ISSAC¿95, Montréal, Canada, 1995, 158, 166
[3]
F. Boulier, D. Lazard, F. Ollivier, M. Petitot, Technical Report, 1997, Villeneuve d'Ascq, France
[4]
N. Bourbaki, Herman, Paris, 1961.
[5]
S. Chou, X. Gao, Proceedings CADE-10, Kaiserslautern, Germany, 1990, 202, 220
[6]
S. Chou, X. Gao, Proceedings ISAAC¿91, Bonn, Germany, 1991a, 122, 127
[7]
S. Chou, X. Gao, 1991b, On the dimension of an arbitrary ascending chain, 38, 799, 804
[8]
S. Chou, X. Gao, Proceedings ISAAC¿92, Berkeley, CA, 1992, 335, 341
[9]
D. Cox, J. Little, D. O'Shea, Springer-Verlag, New York, 1992.
[10]
G. Gallo, B. Mishra, Proceedings MEGA¿90, 1990, 119, 142
[11]
G. Gallo, B. Mishra, Wu¿Ritt characteristic sets and their complexity, in: Discrete and Computational Geometry: Papers from the DIMACS Special Year, American Mathematical Society and Association for Computing Machinery, 1991, pp. 111-136.
[12]
M. Kalkbrener, 1991
[13]
M. Kalkbrener, A generalized euclidean algorithm for computing triangular representations of algebraic varieties, J. Symb. Comput., 15 (1993) 143-167.
[14]
M. Kalkbrener, Algorithmic properties of polynomial rings, J. Symb. Comput., 26 (1998) 525-581.
[15]
D. Lazard, A new method for solving algebraic systems of positive dimension, Discrete Appl. Math., 33 (1991) 147-160.
[16]
D. Lazard, Systems of algebraic equations (algorithms and complexity), in: Cortona Proceedings, Cambridge University Press, Cambridge, 1991.
[17]
D. Lazard, Solving zero-dimensional algebraic systems, J. Symb. Comput., 15 (1992) 117-132.
[18]
M. Moreno Maza, 1997
[19]
M. Moreno Maza, R. Rioboo, Polynomial gcd computations over towers of algebraic extensions, in: Proceedings AAECC-11, Springer, Berlin, 1995, pp. 365-382.
[20]
J. Ritt, American Mathematical Society, New York, 1932.
[21]
J. Ritt, Dover Publications, New York, 1966.
[22]
P. Samuel, O. Zariski, D. Van Nostrand Company, 1967.
[23]
D. M. Wang, Proc. of the Int. Workshop on Math. Mechanisation, Beijing, China, Wen-Tsün, W.Min-De, C. 1992, Institute of Systems Science, Academia Sinica
[24]
D.M. Wang, An elimination method for polynomial systems, J. Symb. Comput., 16 (1993) 83-114.
[25]
D.M. Wang, An implementation of the characteristic set method in Maple, in: Automated Practical Reasoning: Algebraic Approaches, Springer, Wien, 1995, pp. 187-201.
[26]
D.M. Wang, Decomposing polynomial systems into simple systems, J. Symb. Comput., 25 (1998) 295-314.
[27]
D.M. Wang, Springer-Verlag, Wien, 1998.
[28]
W.T. Wu, Basic principles of mechanical theorem proving in elementary geometries, J. Syst. Sci. Math. Sci., 4 (1984) 207-235.
[29]
W.T. Wu, Some recent advances in mechanical theorem-proving of geometries, in: Automated Theorem Proving: After 25 Years, American Mathematical Society, Providence, 1984, pp. 235-241.
[30]
W.T. Wu, On zeros of algebraic equations¿an application of Ritt principle, Kexue Tongbao, 31 (1986) 1-5.
[31]
W.T. Wu, A zero structure theorem for polynomial equations solving, MM Research Preprints, 1 (1987) 2-12.
[32]
L. Yang, J. Zhang, Searching dependency between algebraic equations: an algorithm applied to automated reasoning, in: Artificial Intelligence in Mathematics, Oxford University Press, Oxford, 1994, pp. 147-156.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Symbolic Computation
Journal of Symbolic Computation  Volume 28, Issue 1
July 1999
310 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 July 1999

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)On Formal Power Series Solutions of Regular Differential ChainsComputer Algebra in Scientific Computing10.1007/978-3-031-69070-9_6(82-99)Online publication date: 1-Sep-2024
  • (2023)A Direttissimo Algorithm for Equidimensional DecompositionProceedings of the 2023 International Symposium on Symbolic and Algebraic Computation10.1145/3597066.3597069(260-269)Online publication date: 24-Jul-2023
  • (2019)Computing the integer points of a polyhedronACM Communications in Computer Algebra10.1145/3338637.333864252:4(126-129)Online publication date: 30-May-2019
  • (2019)Whitney's Theorem, Triangular Sets, and Probabilistic Descent on ManifoldsJournal of Optimization Theory and Applications10.1007/s10957-019-01508-9182:3(935-946)Online publication date: 1-Sep-2019
  • (2018)The polyhedra library in mapleACM Communications in Computer Algebra10.1145/3177795.317779851:3(86-88)Online publication date: 4-Jan-2018
  • (2017)An Algorithm For Spliting Polynomial Systems Based On F4Proceedings of the International Workshop on Parallel Symbolic Computation10.1145/3115936.3115948(1-5)Online publication date: 23-Jul-2017
  • (2016)Involutions of polynomially parametrized surfacesJournal of Computational and Applied Mathematics10.1016/j.cam.2015.08.002294:C(23-38)Online publication date: 1-Mar-2016
  • (2015)Algorithms for Finite Field ArithmeticProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756637(7-12)Online publication date: 24-Jun-2015
  • (2015)Triangular systems and a generalization of primitive polynomialsJournal of Symbolic Computation10.1016/j.jsc.2014.09.02268:P1(316-325)Online publication date: 1-May-2015
  • (2015)Relaxed Hensel lifting of triangular setsJournal of Symbolic Computation10.1016/j.jsc.2014.09.01268:P2(230-258)Online publication date: 1-May-2015
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media