Nothing Special   »   [go: up one dir, main page]

skip to main content
article
Free access

Distinguishing cause from effect using observational data: methods and benchmarks

Published: 01 January 2016 Publication History

Abstract

The discovery of causal relationships from purely observational data is a fundamental problem in science. The most elementary form of such a causal discovery problem is to decide whether X causes Y or, alternatively, Y causes X, given joint observations of two variables X,Y. An example is to decide whether altitude causes temperature, or vice versa, given only joint measurements of both variables. Even under the simplifying assumptions of no confounding, no feedback loops, and no selection bias, such bivariate causal discovery problems are challenging. Nevertheless, several approaches for addressing those problems have been proposed in recent years. We review two families of such methods: methods based on Additive Noise Models (ANMs) and Information Geometric Causal Inference (IGCI). We present the benchmark CAUSEEFFECTPAIRS that consists of data for 100 different causee ffect pairs selected from 37 data sets from various domains (e.g., meteorology, biology, medicine, engineering, economy, etc.) and motivate our decisions regarding the "ground truth" causal directions of all pairs. We evaluate the performance of several bivariate causal discovery methods on these real-world benchmark data and in addition on artificially simulated data. Our empirical results on real-world data indicate that certain methods are indeed able to distinguish cause from effect using only purely observational data, although more benchmark data would be needed to obtain statistically significant conclusions. One of the best performing methods overall is the method based on Additive Noise Models that has originally been proposed by Hoyer et al. (2009), which obtains an accuracy of 63 ± 10 % and an AUC of 0.74 ± 0.05 on the real-world benchmark. As the main theoretical contribution of this work we prove the consistency of that method.

References

[1]
R. Armann and I. Bülthoff. Male and female faces are only perceived categorically when linked to familiar identities - and when in doubt, he is a male. Vision Research, 63:69-80, 2012.
[2]
A. Azzalini and A. W. Bowman. A look at some data on the Old Faithful Geyser. Applied Statistics, 39(3):357-365, 1990.
[3]
K. Bache and M. Lichman. UCI Machine Learning Repository, 2013. URL http://archive.ics.uci.edu/ml.
[4]
D. Baldocchi, E. Falge, L. Gu, R. Olson, D. Hollinger, S. Running, P. Anthoni, C. Bernhofer, K. Davis, R. Evans, J. Fuentes, A. Goldstein, G. Katul, B. Law, X. Lee, Y. Malhi, T. Meyers, W. Munger, W. Oechel, K. T. Paw, K. Pelegaard, H. P. Schmid, R. Valentini, S. Verma, T. Vesala, K. Wilson, and S. Wofsy. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy ux densities. Bulletin of the American Meteorological Society, 82(11):2415-2434, 2001.
[5]
J. Baynes and M. H. Dominiczak. Medical Biochemistry. Mosby, 1999.
[6]
J. Bloomer, J. W. Stehr, C. A. Piety, R. J. Salawitch, and R. R. Dickerson. Observed relationships of ozone air pollution with temperature and emissions. Geophysical Letters, 36(9), 2009.
[7]
K. A. Bollen. Structural Equations with Latent Variables. John Wiley & Sons, 1989.
[8]
E. Braunwald, A. S. Fauci, D. L. Kasper, S. L. Hauser, D. L. Long, and J. L. Jameson, editors. Principles of Internal Medicine: Volume 2. McGraw-Hill, 15th international edition, 2001.
[9]
P. Bühlmann, J. Peters, and J. Ernest. CAM: Causal additive models, high-dimensional order search and penalized regression. The Annals of Statistics, 42(6):2526-2556, 2014.
[10]
C. Clopper and E. S. Pearson. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika, 26:404-413, 1934.
[11]
T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 2006.
[12]
J. Czerniak and H. Zarzycki. Application of rough sets in the presumptive diagnosis of urinary system diseases. In J. Soldek and L. Drobiazgiewicz, editors, Artificial Intelligence and Security in Computing Systems, pages 41-51. Kluwer Academic Publishers, 2003.
[13]
P. Daniušis, D. Janzing, J. M. Mooij, J. Zscheischler, B. Steudel, K. Zhang, and B. Schölkopf. Inferring deterministic causal relations. In Proceedings of the 26th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), pages 143-150, 2010.
[14]
D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain interventions. In Proceedings of the 11th International Conference on Artificial Intelligence and Statistics (AISTATS), pages 107-114, 2007.
[15]
F. Eberhardt and R. Scheines. Interventions and causal inference. Philosophy of Science, 74(5): 981-995, 2007.
[16]
N. Ebrahimi, K. Pughoeft, and E. S. Soofi. Two measures of sample entropy. Statistics and Probability Letters, 20:225-234, 1994.
[17]
P. Ein-Dor and J. Feldmesser. Attributes of the performance of central processing units: a relative performance prediction model. Communications of the ACM, 30:308-317, 1987.
[18]
S. A. Esrey, J. B. Potash, L. Roberts, and C. Shiff. Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bulletin of the World Health Organization, 69(5):609, 1991.
[19]
U. Feister and K. Balzer. Surface ozone and meteorological predictors on a subregional scale. Atmospheric Environment. Part A. General Topics, 25(9):1781-1790, 1991.
[20]
M. A. T. Figueiredo and A. K. Jain. Unsupervised learning of finite mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):381-396, March 2002.
[21]
N. Friedman and I. Nachman. Gaussian process networks. In Proceedings of the 16th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000), pages 211-219, 2000.
[22]
K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. In Advances in Neural Information Processing Systems 20 (NIPS*2007), pages 489-496, 2008.
[23]
R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and Information Theory, 2:155-239, 2006.
[24]
U. Grenander and G. Szego. Toeplitz forms and their applications. University of California Press, 1958.
[25]
A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. In Algorithmic Learning Theory, pages 63-78. Springer-Verlag, 2005.
[26]
A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of independence. In Advances in Neural Information Processing Systems 20 (NIPS*2007), pages 585-592, 2008.
[27]
A. Gretton. A simpler condition for consistency of a kernel independence test. arXiv.org preprint, arXiv:1501.06103v1 [stat.ML], January 2015. URL http://arxiv.org/abs/1501.06103v1.
[28]
P. D. Grünwald. The Minimum Description Length Principle. MIT Press, 2007.
[29]
H. A. Guvenir, B. Acar, G. Demiroz, and A. Cekin. A supervised machine learning algorithm for arrhythmia analysis. In Proceedings of the Computers in Cardiology Conference, 1997.
[30]
I. Guyon, D. Janzing, and B. Schölkopf. Causality: Objectives and assessment. In JMLR Workshop and Conference Proceedings, volume 6, pages 1-38, 2010.
[31]
I. Guyon et al. Results and analysis of 2013-2014 ChaLearn Cause-Effect Pair Challenges. Forthcoming, 2016.
[32]
L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression. Springer, 2002.
[33]
J. D. Haigh. The sun and the earths climate. Living Reviews in Solar Physics, 4(2):2298, 2007.
[34]
D. H. Hathaway. The solar cycle. Living Reviews in Solar Physics, 7:1, 2010.
[35]
K. W. Hipel and A. I. McLeod. Time Series Modelling of Water Resources and Environmental Systems. Elsevier, 1994.
[36]
P. O. Hoyer, S. Shimizu, A. J. Kerminen, and M. Palviainen. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49:362-378, 2008.
[37]
P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. In Advances in Neural Information Processing Systems 21 (NIPS*2008), pages 689-696, 2009.
[38]
A. Hyvärinen. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems 9 (NIPS*1996), pages 273-279, 1997.
[39]
A. Hyvärinen and S. M. Smith. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. Journal of Machine Learning Research, 14:111-152, 2013.
[40]
B. Janzing. Sonne, Wind und Schneerekorde: Wetter und Klima in Furtwangen im Schwarzwald, zum 25-jährigen Bestehen der Wetterstation. Self-published, in German, 2004.
[41]
D. Janzing and B. Schölkopf. Causal inference using the algorithmic Markov condition. IEEE Transactions on Information Theory, 56(10):5168-5194, 2010.
[42]
D. Janzing, X. Sun, and B. Schölkopf. Distinguishing cause and effect via second order exponential models. arXiv.org preprint, arXiv:0910.5561v1 [stat.ML], October 2009. URL http://arxiv.org/abs/0910.5561v1.
[43]
D. Janzing, P. Hoyer, and B. Schölkopf. Telling cause from effect based on high-dimensional observations. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pages 479-486, 2010.
[44]
D. Janzing, J. M. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and B. Schölkopf. Information-geometric approach to inferring causal directions. Artificial Intelligence, 182-183:1-31, 2012.
[45]
S. Jegelka and A. Gretton. Brisk kernel ICA. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines, pages 225-250. MIT Press, 2007.
[46]
E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3):437-471, 1996.
[47]
Y. Kano and S. Shimizu. Causal inference using nonnormality. In Proceedings of the International Symposium on Science of Modeling, the 30th Anniversary of the Information Criterion, pages 261-270, 2003.
[48]
L. F. Kozachenko and N. N. Leonenko. A statistical estimate for the entropy of a random vector. Problems of Information Transmission, 23:9-16, 1987.
[49]
S. Kpotufe, E. Sgouritsa, D. Janzing, and B. Schölkopf. Consistency of causal inference under the additive noise model. In Proceedings of the 31st International Conference on Machine Learning (ICML 2014), pages 478-486, 2014.
[50]
A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Physical Review E, 69:066138, 2004.
[51]
L. Lee, M. R. Rosenzweig, and M. M. Pitt. The effects of improved nutrition, sanitation, and water quality on child health in high-mortality populations. Journal of Econometrics, 77(1):209-235, 1997.
[52]
J. Lemeire and D. Janzing. Replacing causal faithfulness with algorithmic independence of conditionals. Minds and Machines, 23(2):227-249, May 2013.
[53]
M. D. Mahecha, M. Reichstein, N. Carvalhais, G. Lasslop, H. Lange, S. I. Seneviratne, R. Vargas, C. Ammann, M. A. Arain, A. Cescatti, I. A. Janssens, M. Migliavacca, L. Montagnani, and A. D. Richardson. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329(5993):838-840, 2010.
[54]
R. Matthews. Storks deliver babies (p = 0:008). Teaching Statistics, 22(2):36-38, 2000.
[55]
M. Meyer and P. Vlachos. Statlib: Data, software and news from the statistics community, 2014. URL http://lib.stat.cmu.edu/.
[56]
A. M. Moffat. A New Methodology to Interpret High Resolution Measurements of Net Carbon Fluxes between Terrestrial Ecosystems and the Atmosphere. PhD thesis, Friedrich Schiller University, Jena, 2012.
[57]
J. M. Mooij and T. Heskes. Cyclic causal discovery from continuous equilibrium data. In Proceedings of the 29th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2013), pages 431-439, 2013.
[58]
J. M. Mooij and D. Janzing. Distinguishing between cause and effect. In JMLR Workshop and Conference Proceedings, volume 6, pages 147-156, 2010.
[59]
J. M. Mooij, D. Janzing, J. Peters, and B. Schölkopf. Regression by dependence minimization and its application to causal inference. In Proceedings of the 26th International Conference on Machine Learning (ICML 2009), pages 745-52, 2009.
[60]
J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, and B. Schölkopf. Probabilistic latent variable models for distinguishing between cause and effect. In Advances in Neural Information Processing Systems 23 (NIPS*2010), pages 1687-1695, 2010.
[61]
J. M. Mooij, D. Janzing, T. Heskes, and B. Schölkopf. On causal discovery with cyclic additive noise models. In Advances in Neural Information Processing Systems 24 (NIPS*2011), pages 639-647, 2011.
[62]
J. M. Mooij, D. Janzing, J. Zscheischler, and B. Schölkopf. CauseEffectPairs repository, 2014. URL http://webdav.tuebingen.mpg.de/cause-effect/.
[63]
C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The hadcrut4 data set. Journal of Geophysical Research: Atmospheres (1984-2012), 117(D8), 2012.
[64]
W. Nash, T. Sellers, S. Talbot, A. Cawthorn, and W. Ford. The population biology of Abalone (Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast and Islands of Bass Strait. Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288), 1994.
[65]
H. A. Noughabi and R. A. Noughabi. On the entropy estimators. Journal of Statistical Computation and Simulation, 83:784-792, 2013.
[66]
C. Nowzohour and P. Bühlmann. Score-based causal learning in additive noise models. Statistics, 2015.
[67]
J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
[68]
J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with equal error variances. Biometrika, 101:219-228, 2014.
[69]
J. Peters, D. Janzing, and B. Schölkopf. Causal inference on discrete data using additive noise models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33:2436-2450, 2011.
[70]
J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous additive noise models. Journal of Machine Learning Research, 15:2009-2053, 2014.
[71]
J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939-1959, 2005.
[72]
D. Ramirez, J. Via, I. Santamaria, and P. Crespo. Entropy and Kullback-Leibler divergence estimation based on Szego's theorem. In European Signal Processing Conference (EUSIPCO), pages 2470-2474, 2009.
[73]
C. E. Rasmussen and H. Nickisch. Gaussian processes for machine learning (GPML) toolbox. Journal of Machine Learning Research, 11:3011-3015, 2010.
[74]
C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[75]
D. J. Rasmussen, A. M. Fiore, V. Naik, L. W. Horowitz, S. J. McGinnis, and M. G. Schlutz. Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluating chemistry-climate models. Atmospheric Environment, 47:142-153, 2012.
[76]
D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. Detecting novel associations in large data sets. Science, 334(6062):1518-1524, 2011.
[77]
T. Richardson and P. Spirtes. Ancestral graph Markov models. The Annals of Statistics, 30(4): 962-1030, 2002.
[78]
B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.
[79]
B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. M. Mooij. On causal and anticausal learning. In Proceedings of the 29th International Conference on Machine Learning (ICML 2012), pages 1255-1262, 2012.
[80]
E. Sgouritsa, D. Janzing, P. Hennig, and B. Schölkopf. Inference of cause and effect with unsupervised inverse regression. In Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 38, pages 847-855, 2015.
[81]
S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. J. Kerminen. A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003-2030, 2006.
[82]
S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. Hoyer, and K. Bollen. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. Journal of Machine Learning Research, 12:1225-1248, 2011.
[83]
S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey, and M. W. Woolrich. Network modelling methods for FMRI. NeuroImage, 54(2):875-891, 2011.
[84]
T. A. B. Snijders and R. J. Bosker. Multilevel Analysis. An Introduction to Basic and Advanced Multilevel Modelling. Sage, 1999.
[85]
E. F. Solly, I. Schöning, S. Boch, E. Kandeler, S. Marhan, B. Michalzik, J. Müller, J. Zscheischler, S. E. Trumbore, and M. Schrumpf. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 382(1-2):203-218, 2014.
[86]
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt. Feature selection via dependence maximization. Journal of Machine Learning Research, 13:1393-1434, May 2012.
[87]
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2nd edition, 2000.
[88]
B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, 11:1517-1561, 2010.
[89]
A. Statnikov, M. Henaff, N. I. Lytkin, and C. F. Aliferis. New methods for separating causes from effects in genomics data. BMC Genomics, 13:S22, 2012.
[90]
W. R. Stockwell, G. Kramm, H.-E. Scheel, V. A. Mohnen, and W. Seiler. Forest Decline and Ozone. Springer, 1997.
[91]
D. Stowell and M. D. Plumbley. Fast multidimensional entropy estimation by k-d partitioning. IEEE Signal Processing Letters, 16:537-540, 2009.
[92]
D. Stoyan, H. Stoyan, and U. Jansen. Umwelstatistik: Statistische Verarbeitung und Analyse von Umweltdaten. Springer, 1997.
[93]
X. Sun, D. Janzing, and B. Schölkopf. Causal inference by choosing graphs with most plausible Markov kernels. In Proceedings of the 9th International Symposium on Artificial Intelligence and Mathematics, pages 1-11, 2006.
[94]
X. Sun, D. Janzing, and B. Schölkopf. Causal reasoning by evaluating the complexity of conditional densities with kernel methods. Neurocomputing, 71:1248-1256, 2008.
[95]
Z. Szabó. Information theoretical estimators toolbox. Journal of Machine Learning Research, 15: 283-287, 2014.
[96]
O. Tange. GNU Parallel - the command-line power tool. ;login: The USENIX Magazine, 36(1): 42-47, Feb 2011. URL http://www.gnu.org/s/parallel.
[97]
H. Tønnesen, L. Hejberg, S. Frobenius, and J. Andersen. Erythrocyte mean cell volume-correlation to drinking pattern in heavy alcoholics. Acta Medica Scandinavica, 219:515-518, 1986.
[98]
U.S. Department of Commerce. Website of the U.S. Census Bureau, 1994. URL http://www.census.gov/.
[99]
B. van Es. Estimating functionals related to a density by a class of statistics based on spacings. Scandinavian Journal of Statistics, 19:61-72, 1992.
[100]
M. van Hulle. Edgeworth approximation of multivariate differential entropy. Neural Computation, 17:1903-1910, 2005.
[101]
O. Vasicek. A test for normality based on sample entropy. Journal of the Royal Statistical Society, 38:54-59, 1976.
[102]
W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, 4th edition, 2002.
[103]
A. P. Verbyla and B. R. Cullis. Modelling in repeated measures experiments. Journal of the Royal Statistical Society. Series C (Applied Statistics), 39(3):341-356, 1990.
[104]
L. Wasserman. All of Statistics. Springer, 2004.
[105]
C. H. Wheeler. Evidence on agglomeration economies, diseconomies, and growth. Journal of Applied Econometrics, 18(1):79-104, 2003.
[106]
S. Wright. Correlation and causation. Journal of Agricultural Research, 20:557-585, 1921.
[107]
I.-C. Yeh. Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, 28:1797-1808, 1998.
[108]
J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16-17):1873-1896, 2008.
[109]
K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2009), pages 647-655, 2009.
[110]
J. Zscheischler, D. Janzing, and K. Zhang. Testing whether linear equations are causal: A free probability theory approach. In Proceedings of the 27th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2011), pages 839-847, 2011.

Cited By

View all
  • (2024)Adjustment identification distanceProceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence10.5555/3702676.3702750(1569-1598)Online publication date: 15-Jul-2024
  • (2024)Estimating conditional average treatment effects via sufficient representation learningProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/541(4894-4901)Online publication date: 3-Aug-2024
  • (2024)PHSIC against random consistency and its application in causal inferenceProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/233(2108-2116)Online publication date: 3-Aug-2024
  • Show More Cited By
  1. Distinguishing cause from effect using observational data: methods and benchmarks

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image The Journal of Machine Learning Research
    The Journal of Machine Learning Research  Volume 17, Issue 1
    January 2016
    8391 pages
    ISSN:1532-4435
    EISSN:1533-7928
    Issue’s Table of Contents

    Publisher

    JMLR.org

    Publication History

    Published: 01 January 2016
    Revised: 01 December 2015
    Published in JMLR Volume 17, Issue 1

    Author Tags

    1. additive noise
    2. benchmarks
    3. causal discovery
    4. cause-effect pairs
    5. information-geometric causal inference

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)83
    • Downloads (Last 6 weeks)16
    Reflects downloads up to 13 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Adjustment identification distanceProceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence10.5555/3702676.3702750(1569-1598)Online publication date: 15-Jul-2024
    • (2024)Estimating conditional average treatment effects via sufficient representation learningProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/541(4894-4901)Online publication date: 3-Aug-2024
    • (2024)PHSIC against random consistency and its application in causal inferenceProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/233(2108-2116)Online publication date: 3-Aug-2024
    • (2024)NESTERProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i13.29398(14793-14801)Online publication date: 20-Feb-2024
    • (2024)(Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and PlanningACM Transactions on Spatial Algorithms and Systems10.1145/367255610:2(1-42)Online publication date: 1-Jul-2024
    • (2024)AITIA: Efficient Secure Computation of Bivariate Causal DiscoveryProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3670337(4420-4434)Online publication date: 2-Dec-2024
    • (2024)Causal Discovery from Heterogenous Multivariate Time SeriesProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3680269(5499-5502)Online publication date: 21-Oct-2024
    • (2023)Invariant learning via probability of sufficient and necessary causesProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669618(79832-79857)Online publication date: 10-Dec-2023
    • (2023)Nonparametric identifiability of causal representations from unknown interventionsProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668232(48603-48638)Online publication date: 10-Dec-2023
    • (2023)Assumption violations in causal discovery and the robustness of score matchingProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668172(47339-47378)Online publication date: 10-Dec-2023
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media