Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Modeling patterns of activities using activity curves

Published: 01 June 2016 Publication History

Abstract

Pervasive computing offers an unprecedented opportunity to unobtrusively monitor behavior and use the large amount of collected data to perform analysis of activity-based behavioral patterns. In this paper, we introduce the notion of an activity curve, which represents an abstraction of an individual's normal daily routine based on automatically-recognized activities. We propose methods to detect changes in behavioral routines by comparing activity curves and use these changes to analyze the possibility of changes in cognitive or physical health. We demonstrate our model and evaluate our change detection approach using a longitudinal smart home sensor dataset collected from 18 smart homes with older adult residents. Finally, we demonstrate how big data-based pervasive analytics such as activity curve-based change detection can be used to perform functional health assessment. Our evaluation indicates that correlations do exist between behavior and health changes and that these changes can be automatically detected using smart homes, machine learning, and big data-based pervasive analytics.

References

[1]
T. Huynh, M. Fritz, B. Schiele, Discovery of activity patterns using topic models, in: Proceedings of the 10th International Conference on Ubiquitous Computing, ACM Press, New York, New York, USA, 2008, pp. 10-19.
[2]
F.-T. Sun, H.-T. Cheng, C. Kuo, M. Griss, Nonparametric discovery of human routines from sensor data, in: 2014 IEEE International Conference on Pervasive Computing and Communications, IEEE, 2014, pp. 11-19.
[3]
K. Farrahi, D. Gatica-Perez, Discovering routines from large-scale human locations using probabilistic topic models, ACM Trans. Intell. Syst. Technol., 2 (2011) 1-27.
[4]
K. Farrahi, D. Gatica-Perez, What did you do today? discovering daily routines from large-scale mobile data, in: Proceeding of the 16th ACM International Conference on Multimedia, ACM Press, New York, New York, USA, 2008, pp. 849-852.
[5]
J. Zheng, S. Liu, L.M. Ni, Effective routine behavior pattern discovery from sparse mobile phone data via collaborative filtering, in: 2013 IEEE International Conference on Pervasive Computing and Communications, IEEE, 2013, pp. 29-37.
[6]
C. Galambos, M. Skubic, S. Wang, M. Rantz, Management of dementia and depression utilizing in-home passive sensor data, Gerontechnology, 11 (2013) 457-468.
[7]
S. Wang, M. Skubic, Y. Zhu, Activity density map visualization and dissimilarity comparison for eldercare monitoring, IEEE Trans. Inf. Technol. Biomed., 16 (2012) 607-614.
[8]
C. Chen, P. Dawadi, CASASviz: Web-based visualization of behavior patterns in smart environments, in: 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, IEEE, 2011, pp. 301-303.
[9]
M. Kanis, S. Robben, J. Hagen, A. Bimmerman, N. Wagelaar, B. Kröse, Sensor monitoring in the home: Giving voice to elderly people, in: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth, Venice, Italy, 2013, pp. 97-100.
[10]
D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, New York, 2007.
[11]
A. Gretton, K.M. Borgwardt, M.J. Rasch, B. Schölkopf, A. Smola, A kernel two-sample test, J. Mach. Learn. Res., 13 (2012) 723-773.
[12]
B.K. Sriperumbudur, A. Gretton, F.K., B. Schölkopf, The effect of kernel choice of RKHS based statistical tests, in: Representations and Inference on Probability Distributions Workshop, NIPS, Vancouver, B.C, Canada, 2007.
[13]
M. Sugiyama, T. Suzuki, Y. Itoh, T. Kanamori, M. Kimura, Least-squares two-sample test, Neural Netw., 24 (2011) 735-751.
[14]
P. Rashidi, D. Cook, Keeping the resident in the loop: Adapting the smart home to the user, IEEE Trans. Syst. Man Cybern. A, 39 (2009) 949-959.
[15]
P. Rashidi, D.J. Cook, Mining sensor streams for discovering human activity patterns over time, in: 2010 IEEE International Conference on Data Mining, IEEE, 2010, pp. 431-440.
[16]
P. Paavilainen, I. Korhonen, J. Lötjönen, L. Cluitmans, M. Jylhä, A. Särelä, M. Partinen, Circadian activity rhythm in demented and non-demented nursing-home residents measured by telemetric actigraphy, J. Sleep Res., 14 (2005) 61-68.
[17]
S. Robben, G. Englebienne, M. Pol, B. Kröse, How is grandma doing? predicting functional health status from binary ambient sensor data, in: 2012 AAAI Fall Symposium Series, Washington D.C, 2012, pp. 26-31.
[18]
S. Robben, M. Boot, M. Kanis, B. Kr, Identifying and visualizing relevant deviations in longitudinal sensor patterns for care professionals, in: 7th International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth, Venice, Italy, 2013, pp. 416-419.
[19]
S. Robben, M. Pol, B. Kröse, Longitudinal ambient sensor monitoring for functional health assessments, in: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct Publication, ACM Press, New York, New York, USA, 2014, pp. 1209-1216.
[20]
A.G. Fisher, B. Jones, Assessment of Motor and Process Skills. User Manual, Three Star Press, Fort Collins, CO, 2012.
[21]
T.L. Hayes, F. Abendroth, A. Adami, M. Pavel, T.A. Zitzelberger, J.A. Kaye, Unobtrusive assessment of activity patterns associated with mild cognitive impairment, Alzheimer's Dement., 4 (2008) 395-405.
[22]
P. Dawadi, D. Cook, M. Schmitter-Edgecombe, Automated cognitive health assessment using smart home smart monitoring of complex tasks, IEEE Trans. Syst. Sci. Cybern., 43 (2013) 1302-1313.
[23]
P. Dawadi, D.J. Cook, M. Schmitter-Edgecombe, C. Parsey, Automated assessment of cognitive health using smart home technologies, Technol. Health Care, 21 (2013) 323-343.
[24]
M.R. Hodges, N.L. Kirsch, M.W. Newman, M.E. Pollack, Automatic assessment of cognitive impairment through electronic observation of object usage, in: Lecture Notes in Computer Science, vol. 6030, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 192-209.
[25]
D. Riboni, C. Bettini, G. Civitarese, Z.H. Janjua, R. Helaoui, Finegrained recognition of abnormal behaviors for early detection of mild cognitive impairment, Proc. PerCom (2015) 149-154.
[26]
B. Efron, R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, 1994.
[27]
Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B Stat. Methodol., 57 (1995) 289-300.
[28]
T. Luck, M. Luppa, M.C. Angermeyer, A. Villringer, H.-H. König, S.G. Riedel-Heller, Impact of impairment in instrumental activities of daily living and mild cognitive impairment on time to incident dementia: results of the Leipzig longitudinal study of the aged, Psychol. Med., 41 (2011) 1087-1097.
[29]
D. Marson, K. Hebert, Geriatric neuropsychology assessment and intervention, in: Geriatric Neuropsychology Assessment and Intervention, The Guilford Press, New York, USA, 2006, pp. 158-189.
[30]
Y. Ouchi, K. Akanuma, M. Meguro, M. Kasai, H. Ishii, K. Meguro, Impaired instrumental activities of daily living affect conversion from mild cognitive impairment to dementia: the Osaki-Tajiri project, Psychogeriatrics, 12 (2012) 34-42.
[31]
D.J. Cook, N.C. Krishnan, P. Rashidi, Activity discovery and activity recognition: a new partnership, IEEE Trans. Syst. Man Cybern. B, 43 (2013) 820-828.
[32]
N.C. Krishnan, D.J. Cook, Activity recognition on streaming sensor data, Pervasive Mobile Comput., 10 (2014) 138-154.
[33]
D.J. Cook, A.S. Crandall, B.L. Thomas, N.C. Krishnan, CASAS: A smart home in a box, Computer, 46 (2013) 62-69.
[34]
A.P. Association, Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, in: Diagnostic and Statistical Manual of Mental Disorders, vol. 4, American Psychiatric Association, Washington, DC, 2000.
[35]
M.S. Albert, S.T. DeKosky, D. Dickson, B. Dubois, H.H. Feldman, N.C. Fox, A. Gamst, D.M. Holtzman, W.J. Jagust, R.C. Petersen, P.J. Snyder, M.C. Carrillo, B. Thies, C.H. Phelps, The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimer's Dement., 7 (2011) 270-279.
[36]
C.L. Deschenes, S.M. McCurry, Current treatments for sleep disturbances in individuals with dementia, Curr. Psychiatry Rep., 11 (2009) 20-26.
[37]
M. Jelicic, H. Bosma, R.W.H.M. Ponds, M.P.J. Van Boxtel, P.J. Houx, J. Jolles, Subjective sleep problems in later life as predictors of cognitive decline. Report from the Maastricht ageing study (MAAS), Int. J. Geriatr. Psychiatry, 17 (2002) 73-77.
[38]
T. Schmutte, S. Harris, R. Levin, R. Zweig, M. Katz, R. Lipton, The relation between cognitive functioning and self-reported sleep complaints in nondemented older adults: results from the Bronx aging study, Behav. Sleep Med., 5 (2007) 39-56.
[39]
H.C. Driscoll, L. Serody, S. Patrick, J. Maurer, S. Bensasi, P.R. Houck, S. Mazumdar, E.A. Nofzinger, B. Bell, R.D. Nebes, M.D. Miller, C.F. Reynolds, Sleeping well, aging well: a descriptive and cross-sectional study of sleep in "successful agers" 75 and older, Am. J. Geriatr. Psychiatry, 16 (2008) 74-82.
[40]
J.L. Martin, L. Fiorentino, S. Jouldjian, K.R. Josephson, C.A. Alessi, Sleep quality in residents of assisted living facilities: effect on quality of life, functional status, and depression, J. Am. Geriatr. Soc., 58 (2010) 829-836.
[41]
E. Eeles, Sleep and its management in dementia, Rev. Clin. Geront., 16 (2007) 59-70.
[42]
M. Schmitter-Edgecombe, C. Parsey, D.J. Cook, Cognitive correlates of functional performance in older adults: comparison of self-report, direct observation, and performance-based measures, J. Int. Neuropsychol. Soc., 17 (2011) 853-864.
[43]
S. Artero, J. Touchon, K. Ritchie, Disability and mild cognitive impairment: a longitudinal populationbased study, Int. J. Geriatr. Psychiatry, 16 (2001) 1092-1097.
[44]
S.T. Farias, D. Mungas, B.R. Reed, D. Harvey, D. Cahn-Weiner, C. Decarli, MCI is associated with deficits in everyday functioning, Alzheimer Dis. Assoc. Disord., 20 (2006) 217-223.
[45]
H. Pedrosa, A. De Sa, M. Guerreiro, J. Maroco, M.R. Simoes, D. Galasko, A. de Mendonca, Functional evaluation distinguishes MCI patients from healthy elderly people-the ADCS/MCI/ADL scale, J. Nutr. Health Aging, 14 (2010) 703-709.
[46]
M. Schmitter-Edgecombe, C.M. Parsey, Assessment of functional change and cognitive correlates in the progression from healthy cognitive aging to dementia, Neuropsychology, 28 (2014) 881-893.
[47]
A.L. Gross, G.W. Rebok, F.W. Unverzagt, S.L. Willis, J. Brandt, Cognitive predictors of everyday functioning in older adults: Results from the ACTIVE cognitive intervention trial, J. Gerontol. B Psychol. Sci. Soc. Sci., 66 (2011) 557-566.
[48]
M. Schmitter-Edgecombe, C. McAlister, A. Weakley, Naturalistic assessment of everyday functioning in individuals with mild cognitive impairment: the day-out task, Neuropsychology, 26 (2012) 631-641.
[49]
D. Podsiadlo, S. Richardson, The timed "Up & Go": a test of basic functional mobility for frail elderly persons, J. Am. Geriatr. Soc., 39 (1991) 142-148.
[50]
C. Randolph, Repeatable Battery for the Assessment of Neuropsychological Status Update, Psychological Corporation, San Antonio, Texas, 1998.

Cited By

View all
  • (2023)Deep Learning-Based Abnormal Behavior Detection for Elderly Healthcare Using Consumer Network CamerasIEEE Transactions on Consumer Electronics10.1109/TCE.2023.330985270:1(2414-2422)Online publication date: 29-Aug-2023
  • (2022)Detecting Smartwatch-Based Behavior Change in Response to a Multi-Domain Brain Health InterventionACM Transactions on Computing for Healthcare10.1145/35080203:3(1-18)Online publication date: 7-Apr-2022
  • (2017)Detecting abnormal behaviours of institutionalized older adults through a hybrid-inference approachPervasive and Mobile Computing10.1016/j.pmcj.2017.06.01940:C(708-723)Online publication date: 1-Sep-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Pervasive and Mobile Computing
Pervasive and Mobile Computing  Volume 28, Issue C
June 2016
149 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 June 2016

Author Tags

  1. Activity curve
  2. Functional assessment
  3. Permutation
  4. Smart environments

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Deep Learning-Based Abnormal Behavior Detection for Elderly Healthcare Using Consumer Network CamerasIEEE Transactions on Consumer Electronics10.1109/TCE.2023.330985270:1(2414-2422)Online publication date: 29-Aug-2023
  • (2022)Detecting Smartwatch-Based Behavior Change in Response to a Multi-Domain Brain Health InterventionACM Transactions on Computing for Healthcare10.1145/35080203:3(1-18)Online publication date: 7-Apr-2022
  • (2017)Detecting abnormal behaviours of institutionalized older adults through a hybrid-inference approachPervasive and Mobile Computing10.1016/j.pmcj.2017.06.01940:C(708-723)Online publication date: 1-Sep-2017
  • (2016)Discovery and recognition of unknown activitiesProceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct10.1145/2968219.2968288(783-792)Online publication date: 12-Sep-2016
  • (2016)Unsupervised detection and analysis of changes in everyday physical activity dataJournal of Biomedical Informatics10.1016/j.jbi.2016.07.02063:C(54-65)Online publication date: 1-Oct-2016

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media