Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/2814058.2814090acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbsiConference Proceedingsconference-collections
research-article

Quantitative temporal association rule mining by genetic algorithm

Published: 26 May 2015 Publication History

Abstract

Association rule mining has shown great potential to extract knowledge from multidimensional data sets. However, existing methods in the literature are not effectively applicable to quantitative temporal data. This article extends the concepts of association rule mining from the literature. Based on the extended concepts is presented a method to mine rules from multidimensional temporal quantitative data sets using genetic algorithm, called GTARGA, in reference to Quantitative Temporal Association Rule Mining by Genetic Algorithm. Experiments with QTARGA in four real data sets show that it allows to mine several high-confidence rules in a single execution of the method.

References

[1]
S. Amo, N. A. Silva, R. P. Silva, and F. S. Pereira. Tree pattern mining with tree automata constraints. Information Systems, 35:570-591, 2010.
[2]
B. Catania and A. Maddalena. A unified framework for heterogeneous patterns. Information Systems, 37:460-483, 2012.
[3]
D.-A. Chiang, C.-T. Wang, S.-P. Chen, and C.-C. Chen. The cyclic model analysis on sequential patterns. IEEE Transactions on Knowledge and Data Engineering, 21(11):1617-1628, 2009.
[4]
J. K. Febrer-Hernández and J. Hernández-Palancar. Sequential pattern mining algorithms review. Intelligent Data Analysis, 16:451-466, 2012.
[5]
T. Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):164-181, 2011.
[6]
E. Georgii, L. Richter, U. Rückert, and S. Kramer. Analyzing microarray data using quantitative association rules. Bioinformatics, 21(suppl 2):ii123-ii129, 2005.
[7]
Y. Hai and X. Li. A general temporal association rule frequent itemsets mining algorithm. International Journal of Advancements in Computing Technology, 3(11):63-71, 2011.
[8]
T.-P. Hong, C.-S. Kuo, and S.-C. Chi. Mining association rules from quantitative data. Intelligent Data Analysis, 3(5):363-376, 1999.
[9]
C.-H. Lee, M.-S. Chen, and C.-R. Lin. Progressive partition miner: an efficient algorithm for mining general temporal association rules. IEEE Transaction on Knowledge and Data Engineering, 15(4):1004-1017, 2003.
[10]
Y. J. Lee, J. W. Lee, D. J. Chai, B. H. Hwang, and K. H. Ryu. Mining temporal interval relational rules from temporal data. Journal of Systems and Software, 82(1):155-167, 2009.
[11]
N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algorithms. ACM Computing Surveys, 43(1):1-41, 2010.
[12]
D. Martin, A. Rosete, J. Alcala-Fdez, and F. Herrera. A new multiobjective evolutionary algorithm for mining a reduced set of interesting positive and negative quantitative association rules. Evolutionary Computation, IEEE Transactions on, 18(1):54-69, 2014.
[13]
M. Martínez-Ballesteros, A. Troncoso, F. Martínez-Álvarez, and J. C. Riquelme. Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution. Integrated Computer-Aided Engineering, 17(3):227-242, 2010.
[14]
B. Pei, S. Zhao, H. Chen, X. Zhou, and D. Chen. Farp: Mining fuzzy association rules from a probabilistic quantitative database. Information Sciences, 237:242 - 260, 2013.
[15]
M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong. Mining multidimensional and multilevel sequential patterns. ACM Transactions on Knowledge Discovery from Data, 4(1):1-37, 2010.
[16]
A. Pétrowski. A clearing procedure as a niching method for genetic algorithms. In Proceedings of 3rd IEEE International Conference on Evolutionary Computation, pages 798-803, New York, USA, 1996.
[17]
N. Tatti and B. Cule. Mining closed strict episodes. Data Mining and Knowledge Discovery, 25(1):34-66, 2011.
[18]
X. Yan, C. Zhang, and S. Zhang. Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Systems with Applications, 36:3066-3076, 2009.
[19]
M. Zhang and C. He. Survey on association rules mining algorithms. Advancing Computing, Communication, Control and Management, 56:111-118, 2010.
[20]
H. Zheng, J. He, G. Huang, and Y. Zhang. Optimized fuzzy association rule mining for quantitative data. In 2014 IEEE International Conference on Fuzzy Systems, pages 396-403, Beijing, China, 2014.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
SBSI '15: Proceedings of the annual conference on Brazilian Symposium on Information Systems: Information Systems: A Computer Socio-Technical Perspective - Volume 1
May 2015
780 pages
  • Program Chairs:
  • Sean W. M. Siqueira,
  • Sergio T. Carvalho

Sponsors

  • Fundacao de Amparo a Pesquisa do Estado de Goias: FAPEG
  • SBC: Brazilian Computer Society
  • Institute of Informatics/Federal University of Goias: INF/UFG
  • Faculdades ALFA: Faculdades ALFA
  • Global RH Solutions: Global RH Solutions
  • Secretaria de Ciencia, Tecnologia e Inovacao do Estado de Goias: SECTEC-GO
  • CAPES: Brazilian Higher Education Funding Council

In-Cooperation

Publisher

Brazilian Computer Society

Porto Alegre, Brazil

Publication History

Published: 26 May 2015
Accepted: 01 April 2015
Received: 01 February 2015

Check for updates

Author Tags

  1. Genetic algorithms
  2. association rules mining
  3. temporal quantitative data

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SBSI '15
Sponsor:
  • Fundacao de Amparo a Pesquisa do Estado de Goias
  • SBC
  • Institute of Informatics/Federal University of Goias
  • Faculdades ALFA
  • Global RH Solutions
  • Secretaria de Ciencia, Tecnologia e Inovacao do Estado de Goias
  • CAPES
SBSI '15: Brazilian Symposium on Information Systems
May 26 - 29, 2015
Goias, Goiania, Brazil

Acceptance Rates

SBSI '15 Paper Acceptance Rate 101 of 313 submissions, 32%;
Overall Acceptance Rate 181 of 557 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Nov 2024

Other Metrics

Citations

View Options

Login options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media