Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Complete stagnation of GMRES for normal matrices

Published: 01 June 2014 Publication History

Abstract

In this paper we study the problem of complete stagnation of the generalized minimum residual (GMRES) method for normal matrices. We first characterize all n í n nonsingular normal matrices A such that GMRES ( A, b ) stagnates completely for some vector b . Also we give necessary and sufficient conditions for the non-existence of a real stagnation vector for real normal matrices. The number of real stagnation vectors for normal matrices is studied. Moreover, we characterize all the eigenvalues of nonsingular normal matrices A M 3 ( C ) such that GMRES ( A, b ) stagnates completely for some b C 3 . Using the results derived by A. Greenbaum, V. Pták and Z. Strakoš in 1996, we consider the complete stagnation of unitary matrices and derive another characterization for all nonsingular normal matrices A M 3 ( R ) such that GMRES ( A, b ) stagnates completely for some vector b R 3 .

References

[1]
Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986) 856-869.
[2]
I. Zavorin, Analysis of GMRES convergence by spectral factorization of the Krylov matrix, Ph.D. Thesis, University of Maryland, 2001.
[3]
I. Zavorin, D.P. O'Leary, H. Elman, Complete stagnation of GMRES, Linear Algebra Appl., 367 (2003) 165-183.
[4]
G. Meurant, Necessary and sufficient conditions for GMRES complete and partial stagnation. http://pagesperso-orange.fr/gerard.meurant.
[5]
G. Meurant, The complete stagnation of GMRES for n ¿ 4, Electron. Trans. Numer. Anal., 39 (2012) 75-101.
[6]
O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
[7]
A. Greenbaum, Generalizations of the field of values useful in the study of polynomial functions of a matrix, Linear Algebra Appl., 347 (2002) 233-249.
[8]
K. Jubilou, H. Sadok, Analysis of some vector extrapolation methods for solving systems of linear equations, Numer. Math., 70 (1995) 73-89.
[9]
Ch. Davis, C.K. Li, A. Salemi, Polynomial numerical hulls of matrices, Linear Algebra Appl., 428 (2008) 137-153.
[10]
R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 2013.
[11]
V. Faber, W. Joubert, M. Knill, T. Manteuffel, Minimal residual method stronger than polynomial preconditioning, SIAM J. Matrix Anal. Appl., 17 (1996) 707-729.
[12]
A. Greenbaum, L. Gurvits, Max-Min properties of matrix factor norms, SIAM J. Sci. Comput., 15 (1994) 348-358.
[13]
H.R. Afshin, M.A. Mehrjoofard, A. Salemi, Polynomial inverse images and polynomial numerical hulls of normal matrices, Oper. Matrices, 5 (2011) 89-96.
[14]
Ch. Davis, A. Salemi, On polynomial numerical hulls of normal matrices, Linear Algebra Appl., 383 (2004) 151-161.
[15]
A. Greenbaum, V. Pták, Z. Strakoš, Any non increasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996) 465-469.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics  Volume 263, Issue C
June 2014
517 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 June 2014

Author Tags

  1. 15A06
  2. 15A60
  3. 65F10
  4. Complete stagnation
  5. GMRES
  6. Normal matrices
  7. Polynomial numerical hull

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Nov 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media