Nothing Special   »   [go: up one dir, main page]

skip to main content
article

The complexity of answering conjunctive and navigational queries over OWL 2 EL knowledge bases

Published: 01 September 2014 Publication History

Abstract

OWL 2 EL is a popular ontology language that supports role inclusions--axioms of the form S1...Sn ⊆ S that capture compositional properties of roles. Role inclusions closely correspond to context-free grammars, which was used to show that answering conjunctive queries (CQs) over OWL 2 EL knowledge bases with unrestricted role inclusions is undecidable. However, OWL 2 EL inherits from OWL 2 DL the syntactic regularity restriction on role inclusions, which ensures that role chains implying a particular role can be described using a finite automaton (FA). This is sufficient to ensure decidability of CQ answering; however, the FAs can be worst-case exponential in size so the known approaches do not provide a tight upper complexity bound.
In this paper, we solve this open problem and show that answering CQs over OWL 2 EL knowledge bases is PSpace-complete in combined complexity (i.e., the complexity measured in the total size of the input). To this end, we use a novel encoding of regular role inclusions using bounded-stack pushdown automata--that is, FAs extended with a stack of bounded size. Apart from theoretical interest, our encoding can be used in practical tableau algorithms to avoid the exponential blowup due to role inclusions. In addition, we sharpen the lower complexity bound and show that the problem is PSPACE-hard even if we consider only role inclusions as part of the input (i.e., the query and all other parts of the knowledge base are fxed). Finally, we turn our attention to navigational queries over OWL 2 EL knowledge bases, and we show that answering positive, converse-free conjunctive graph XPath queries is PSPACE-complete as well; this is interesting since allowing the converse operator in queries is known to make the problem ExpTime-hard. Thus, in this paper we present several important contributions to the landscape of the complexity of answering expressive queries over description logic knowledge bases.

References

[1]
Anselmo, M., Giammarresi, D., & Varricchio, S. (2003). Finite automata and non-self- embedding grammars. In Proceedings of the 7th International Conference on Im- plementation and Application of Automata, CIAA'02, pp. 47-56, Berlin, Heidelberg. Springer-Verlag.
[2]
Artale, A., Calvanese, D., Kontchakov, R., & Zakharyaschev, M. (2009). The DL-Lite family and relations. J. Artif. Intell. Res. (JAIR), 36, 1-69.
[3]
Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Kaelbling, L. P., & Saffiotti, A. (Eds.), Proceedings of the 19th International Joint Conference on Arti- ficial Intelligence (IJCAI 2005), pp. 364-369, Edinburgh, UK. Morgan Kaufmann Publishers.
[4]
Baader, F., Brandt, S., & Lutz, C. (2008). Pushing the EL envelope further. In Clark, K., & Patel-Schneider, P. F. (Eds.), In Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions.
[5]
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (Eds.). (2010). The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press. Paperback edition.
[6]
Baget, J.-F., Leclère, M., Mugnier, M.-L., & Salvat, E. (2011). On rules with existential variables: Walking the decidability line. Artif. Intell., 175 (9-10), 1620-1654.
[7]
Barceló, P. (2013). Querying graph databases. In Hull, R., & Fan, W. (Eds.), PODS, pp. 175-188. ACM.
[8]
Barrett, C., Jacob, R., & Marathe, M. (2000). Formal-language-constrained path problems. SIAM J. Comput., 30(3), 809-837.
[9]
Bienvenu, M., Calvanese, D., Ortiz, M., & Simkus, M. (2014). Nested regular path queries in Description Logics. In Proc. of the 14th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press.
[10]
Bienvenu, M., Ortiz, M., & Simkus, M. (2013). Conjunctive regular path queries in lightweight Description Logics. In Rossi, F. (Ed.), IJCAI. IJCAI/AAAI.
[11]
Calì, A., Gottlob, G., & Kifer, M. (2013). Taming the infnite chase: Query answering under expressive relational constraints. J. Artif. Intell. Res. (JAIR), 48, 115-174.
[12]
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., & Savo, D. F. (2011). The MASTRO system for Ontology-Based Data Access. Semantic Web, 2 (1), 43-53.
[13]
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2006). Data complexity of query answering in Description Logics. In Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260-270.
[14]
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable reasoning and efficient query answering in Description Logics: The DL-Lite family. J. Autom. Reasoning, 39 (3), 385-429.
[15]
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2013). Data complexity of query answering in Description Logics. Artifcial Intelligence, 195, 335-360.
[16]
Calvanese, D., De Giacomo, G., Lenzerini, M., & Vardi, M. Y. (2000). Containment of conjunctive regular path queries with inverse. In Proc. of the 7th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2000), pp. 176-185.
[17]
Calvanese, D., Eiter, T., & Ortiz, M. (2009). Regular path queries in expressive Description Logics with nominals. In Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference on Artifcial Intelligence, Pasadena, California, USA, July 11-17, 2009, pp. 714-720.
[18]
Calvanese, D., Vardi, M. Y., De Giacomo, G., & Lenzerini, M. (2000). View-based query processing for regular path queries with inverse. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '00, pp. 58-66, New York, NY, USA. ACM.
[19]
Chandra, A. K., & Merlin, P. M. (1977). Optimal implementation of conjunctive queries in relational data bases. In Hopcroft, J. E., Friedman, E. P., & Harrison, M. A. (Eds.), Proc. of the 9th annual ACM Symposium on Theory of Computing (STOC '77), pp. 77-90, Boulder, CO, USA. ACM Press.
[20]
Cruz, I. F., Mendelzon, A. O., & Wood, P. T. (1987). A graphical query language supporting recursion. SIGMOD Rec., 16 (3), 323-330.
[21]
Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., & Sattler, U. (2008). OWL 2: The next step for OWL. J. Web Sem., 6 (4), 309-322.
[22]
De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., Ruzzi, M., & Savo, D. F. (2012). MASTRO: A reasoner for effective Ontology-Based Data Access. In Horrocks, I., Yatskevich, M., & Jiménez-Ruiz, E. (Eds.), ORE, Vol. 858 of CEUR Workshop Proceedings. CEUR-WS.org.
[23]
Eiter, T., Ortiz, M., & Simkus, M. (2012a). Conjunctive query answering in the Description Logic SH using knots. J. Comput. Syst. Sci., 78 (1), 47-85.
[24]
Eiter, T., Ortiz, M., Simkus, M., Tran, T.-K., & Xiao, G. (2012b). Query rewriting for Horn-SHIQ plus rules. In Hoffmann, J., & Selman, B. (Eds.), AAAI. AAAI Press.
[25]
Fan, W. (2012). Graph pattern matching revised for social network analysis. In Deutsch, A. (Ed.), ICDT, pp. 8-21. ACM.
[26]
Geffert, V., Mereghetti, C., & Palano, B. (2010). More concise representation of regular languages by automata and regular expressions. Information and computation, 208 (4), 385-394.
[27]
Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H., Koubarakis, M., Lenzerini, M., Möller, R., Rodriguez-Muro, M., Özcep, O., Rosati, R., Schlatte, R., Schmidt, M., Soylu, A., & Waaler, A. (2013). Scalable end-user access to big data. In Akerkar, R. (Ed.), Big Data Computing. CRC Press.
[28]
Glimm, B., Lutz, C., Horrocks, I., & Sattler, U. (2008). Conjunctive query answering for the Description Logic SHIQ. J. Artif. Intell. Res. (JAIR), 31, 157-204.
[29]
Gottlob, G., Manna, M., & Pieris, A. (2014). Polynomial combined rewritings for existential rules. In Proc. of the 14th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press.
[30]
Gottlob, G., & Schwentick, T. (2012). Rewriting ontological queries into small nonrecursive datalog programs. In Brewka, G., Eiter, T., & McIlraith, S. A. (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press.
[31]
Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description Logic Programs: Combining logic programs with Description Logic. In Proceedings of the 12th international conference on World Wide Web, pp. 48-57.
[32]
Gutierrez, C., Hurtado, C. A., Mendelzon, A. O., & Pérez, J. (2011). Foundations of semantic web databases. J. Comput. Syst. Sci., 77 (3), 520-541.
[33]
Harel, D. (1984). Dynamic logic. In Gabbay, D., & Guenthner, F. (Eds.), Handbook of Philosophical Logic Vol. II, pp. 497-604. Reidel Publishing Company.
[34]
Harel, D., Tiuryn, J., & Kozen, D. (2000). Dynamic Logic. MIT Press, Cambridge, MA, USA.
[35]
Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2003). Introduction to Automata Theory, Languages, and Computation - international edition (2. ed). Addison-Wesley.
[36]
Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In Doherty, P., Mylopoulos, J., & Welty, C. A. (Eds.), KR, pp. 57-67. AAAI Press.
[37]
Horrocks, I., & Sattler, U. (2004). Decidability of SHIQ with complex role inclusion axioms. Artifcial Intelligence, 160 (1-2), 79-104.
[38]
Johnson, D. S., & Klug, A. C. (1984). Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci., 28 (1), 167-189.
[39]
Kazakov, Y. (2008). RIQ and SROIQ are harder than SHOIQ. In Brewka, G., & Lang, J. (Eds.), KR, pp. 274-284. AAAI Press.
[40]
Kontchakov, R., Lutz, C., Toman, D., Wolter, F., & Zakharyaschev, M. (2011). The combined approach to Ontology-Based Data Access. In Walsh, T. (Ed.), IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artifcial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 2656-2661. IJCAI/AAAI.
[41]
Kostylev, E. V., Reutter, J. L., & Vrgoc, D. (2014). XPath for DL-Lite ontologies. In Bienvenu, M., Ortiz, M., Rosati, R., & Simkus, M. (Eds.), Informal Proceedings of the 27th International Workshop on Description Logics, Vienna, Austria, July 17-20, 2014., Vol. 1193 of CEUR Workshop Proceedings, pp. 258-269. CEUR-WS.org.
[42]
Kozen, D. (1977). Lower bounds for natural proof systems. In FOCS, pp. 254-266. IEEE Computer Society.
[43]
Krötzsch, M. (2011). Efficient rule-based inferencing for OWL EL. In Walsh, T. (Ed.), Proceedings of the 22nd International Joint Conference on Artifcial Intelligence (IJCAI' 11). AAAI Press/IJCAI. 2668-2673.
[44]
Krötzsch, M., Rudolph, S., & Hitzler, P. (2007). Conjunctive queries for a tractable fragment of OWL 1.1. In Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., & Cudré-Mauroux, P. (Eds.), Proceedings of the 6th International Semantic Web Conference (ISWC'07), Vol. 4825 of LNCS, pp. 310-323. Springer.
[45]
Libkin, L., Martens, W., & Vrgoc, D. (2013). Querying graph databases with XPath. In Tan, W.-C., Guerrini, G., Catania, B., & Gounaris, A. (Eds.), ICDT, pp. 129-140. ACM.
[46]
Lutz, C. (2008). The complexity of conjunctive query answering in expressive Description Logics. In Automated Reasoning.
[47]
Lutz, C., Seylan, I., Toman, D., & Wolter, F. (2013). The combined approach to OBDA: Taming role hierarchies using flters. In Alani, H., Kagal, L., Fokoue, A., Groth, P. T., Biemann, C., Parreira, J. X., Aroyo, L., Noy, N. F., Welty, C., & Janowicz, K. (Eds.), International Semantic Web Conference (1), Vol. 8218 of Lecture Notes in Computer Science, pp. 314-330. Springer.
[48]
Lutz, C., Toman, D., & Wolter, F. (2009). Conjunctive query answering in the Description Logic EL using a relational database system. In Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Conference on Artifcial Intelligence, Pasadena, California, USA, July 11-17, 2009, pp. 2070-2075.
[49]
Marnette, B. (2009). Generalized schema-mappings: From termination to tractability. In Paredaens, J., & Su, J. (Eds.), PODS, pp. 13-22. ACM.
[50]
Mora, J., Rosati, R., & Corcho, Ó. (2014). kyrie2: Query rewriting under extensional constraints in ELHIO. In Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C. A., Vrandecic, D., Groth, P. T., Noy, N. F., Janowicz, K., & Goble, C. A. (Eds.), The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, Vol. 8796 of Lecture Notes in Computer Science, pp. 568-583. Springer.
[51]
Ortiz, M., Calvanese, D., & Eiter, T. (2008). Data complexity of query answering in expressive Description Logics via tableaux. J. Autom. Reasoning, 41 (1), 61-98.
[52]
Ortiz, M., Rudolph, S., & Simkus, M. (2011). Query answering in the Horn fragments of the Description Logics SHOIQ and SROIQ. In Walsh, T. (Ed.), IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artifcial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pp. 1039-1044. IJCAI/AAAI.
[53]
Pérez, J., Arenas, M., & Gutierrez, C. (2010). nSPARQL: A navigational language for RDF. Web Semant., 8 (4), 255-270.
[54]
Pérez-Urbina, H., Motik, B., & Horrocks, I. (2010). Tractable query answering and rewriting under Description Logic constraints. J. Applied Logic, 8 (2), 186-209.
[55]
Rodriguez-Muro, M., & Calvanese, D. (2012). High performance query answering over DL-Lite ontologies. In Brewka, G., Eiter, T., & McIlraith, S. A. (Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press.
[56]
Rosati, R. (2007). On conjunctive query answering in EL. In Calvanese, D., Franconi, E., Haarslev, V., Lembo, D., Motik, B., Turhan, A.-Y., & Tessaris, S. (Eds.), Description Logics, Vol. 250 of CEUR Workshop Proceedings. CEUR-WS.org.
[57]
Rudolph, S., & Glimm, B. (2010). Nominals, inverses, counting, and conjunctive queries or: Why infnity is your friend!. J. Artif. Intell. Res. (JAIR), 39, 429-481.
[58]
Simancík, F. (2012). Elimination of complex rias without automata. In Kazakov, Y., Lembo, D., & Wolter, F. (Eds.), Proceedings of the 2012 International Workshop on Description Logics, DL-2012, Rome, Italy, June 7-10, 2012, Vol. 846 of CEUR Workshop Proceedings. CEUR-WS.org.
[59]
Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. J. Web Sem., 5 (2), 51-53.
[60]
Stefanoni, G., Motik, B., & Horrocks, I. (2013). Introducing nominals to the combined query answering approaches for EL. In desJardins, M., & Littman, M. L. (Eds.), AAAI. AAAI Press.
[61]
ter Horst, H. J. (2005). Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. Web Semantics: Science, Services and Agents on the World Wide Web, 3 (2-3), 79-115.
[62]
Tsarkov, D., & Horrocks, I. (2006). FaCT++ Description Logic reasoner: System description. In Furbach, U., & Shankar, N. (Eds.), IJCAR, Vol. 4130 of Lecture Notes in Computer Science, pp. 292-297. Springer.
[63]
Urbani, J., van Harmelen, F., Schlobach, S., & Bal, H. E. (2011). QueryPIE: Backward reasoning for OWL Horst over very large knowledge bases. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N. F., & Blomqvist, E. (Eds.), International Semantic Web Conference (1), Vol. 7031 of Lecture Notes in Computer Science, pp. 730-745. Springer.
[64]
Vardi, M. Y. (1982). The complexity of relational query languages (extended abstract). In Proceedings of the fourteenth annual ACM symposium on Theory of computing, STOC '82, pp. 137-146, New York, NY, USA. ACM.
[65]
Venetis, T., Stoilos, G., & Stamou, G. B. (2012). Incremental query rewriting for OWL 2 QL. In Kazakov, Y., Lembo, D., & Wolter, F. (Eds.), Proceedings of the 2012 International Workshop on Description Logics, DL-2012, Rome, Italy, June 7-10, 2012, Vol. 846 of CEUR Workshop Proceedings. CEUR-WS.org.
[66]
Virgilio, R. D., Orsi, G., Tanca, L., & Torlone, R. (2012). NYAYA: A system supporting the uniform management of large sets of semantic data. In Kementsietsidis, A., & Salles, M. A. V. (Eds.), IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, pp. 1309-1312. IEEE Computer Society.
[67]
Wessel, M. (2001). Obstacles on the Way to Qualitative Spatial Reasoning with Description Logics: Some Undecidability Results. In Working Notes of the 2001 International Description Logics Workshop (DL-2001), Vol. 49. CEUR-WS.org.

Cited By

View all
  • (2023)Finite entailment of UCRPQs over ALC ontologies (extended abstract)Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/717(6442-6446)Online publication date: 19-Aug-2023
  • (2020)Knowledge Graphs: Research DirectionsReasoning Web. Declarative Artificial Intelligence10.1007/978-3-030-60067-9_8(223-253)Online publication date: 24-Jun-2020
  • (2018)Answering regular path queries over SQ ontologiesProceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence10.5555/3504035.3504260(1845-1852)Online publication date: 2-Feb-2018
  • Show More Cited By
  1. The complexity of answering conjunctive and navigational queries over OWL 2 EL knowledge bases

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Artificial Intelligence Research
    Journal of Artificial Intelligence Research  Volume 51, Issue 1
    September 2014
    856 pages

    Publisher

    AI Access Foundation

    El Segundo, CA, United States

    Publication History

    Published: 01 September 2014
    Published in JAIR Volume 51, Issue 1

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 21 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Finite entailment of UCRPQs over ALC ontologies (extended abstract)Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/717(6442-6446)Online publication date: 19-Aug-2023
    • (2020)Knowledge Graphs: Research DirectionsReasoning Web. Declarative Artificial Intelligence10.1007/978-3-030-60067-9_8(223-253)Online publication date: 24-Jun-2020
    • (2018)Answering regular path queries over SQ ontologiesProceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence10.5555/3504035.3504260(1845-1852)Online publication date: 2-Feb-2018
    • (2018)Compiling model representations for querying large ABoxes in expressive DLsProceedings of the 27th International Joint Conference on Artificial Intelligence10.5555/3304889.3304894(1691-1698)Online publication date: 13-Jul-2018
    • (2018)Query answering with transitive and linear-ordered dataJournal of Artificial Intelligence Research10.1613/jair.1.1124063:1(191-264)Online publication date: 1-Sep-2018
    • (2017)Restricted chase (non)termination for existential rules with disjunctionsProceedings of the 26th International Joint Conference on Artificial Intelligence10.5555/3171642.3171774(922-928)Online publication date: 19-Aug-2017
    • (2017)Answering conjunctive regular path queries over guarded existential rulesProceedings of the 26th International Joint Conference on Artificial Intelligence10.5555/3171642.3171756(793-799)Online publication date: 19-Aug-2017
    • (2017)Tractable Query Answering for Expressive Ontologies and Existential RulesThe Semantic Web – ISWC 201710.1007/978-3-319-68288-4_10(156-172)Online publication date: 21-Oct-2017
    • (2016)A Practical Acyclicity Notion for Query Answering Over Horn- OntologiesThe Semantic Web – ISWC 201610.1007/978-3-319-46523-4_5(70-85)Online publication date: 17-Oct-2016
    • (2015)PAGOdAJournal of Artificial Intelligence Research10.5555/2910557.291056654:1(309-367)Online publication date: 1-Sep-2015
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media