Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

Semantic-based QoS management in cloud systems

Published: 01 March 2014 Publication History

Abstract

Cloud Computing and Service Oriented Architectures have seen a dramatic increase of the amount of applications, services, management platforms, data, etc. gaining momentum for the necessity of new complex methods and techniques to deal with the vast heterogeneity of data sources or services. In this sense Quality of Service (QoS) seeks for providing an intelligent environment of self-management components based on domain knowledge in which cloud components can be optimized easing the transition to an advanced governance environment. On the other hand, semantics and ontologies have emerged to afford a common and standard data model that eases the interoperability, integration and monitoring of knowledge-based systems. Taking into account the necessity of an interoperable and intelligent system to manage QoS in cloud-based systems and the emerging application of semantics in different domains, this paper reviews the main approaches for semantic-based QoS management as well as the principal methods, techniques and standards for processing and exploiting diverse data providing advanced real-time monitoring services. A semantic-based framework for QoS management is also outlined taking advantage of semantic technologies and distributed datastream processing techniques. Finally a discussion of existing efforts and challenges is also provided to suggest future directions. We review the concept of Quality of Service in Cloud and Service Oriented Computing.We review the use of Semantics in Cloud and Service Oriented Computing.We review the existing techniques to deal with Big Data.We propose a Lambda Architecture based on Semantics and Big Data.We discuss and outline future challenges in semantic-based QoS management.

References

[1]
P. Mell, T. Grance, The NIST Definition of Cloud Computing, Tech. Rep. 800-145, National Institute of Standards and Technology (NIST), Gaithersburg, MD (September).
[2]
M.C. Huebscher, J.A. McCann, A survey of autonomic computing degrees, models, and applications, ACM Comput. Surv., 40 (2008) 7:1-7:28.
[3]
J. Conejero, L. Tomás, B. Caminero, C. Carrion, Multilevel SLA-based QoS support in grids, in: Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, ISPA'12, 2012, pp. 239-246.
[4]
R.C. Palacios, E. Fernandes, M. Sabbagh, A. de Amescua Seco, Human and intellectual capital management in the cloud: software vendor perspective, J. UCS, 18 (2012) 1544-1557.
[5]
J.M. Pedersen, M.T. Riaz, J.C. Junior, B. Dubalski, D. Ledzinski, A. Patel, Assessing measurements of QoS for global cloud computing services, in: Proceedings of the 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, DASC'11, 2011, pp. 682-689.
[6]
A. Bolles, M. Grawunder, J. Jacobi, Streaming SPARQL extending SPARQL to process data streams, in: Proceedings of the 5th European Semantic Web Conference on the Semantic Web: Research and Applications, ESWC'08, 2008, pp. 448-462.
[7]
D.F. Barbieri, D. Braga, S. Ceri, M. Grossniklaus, An execution environment for C-SPARQL queries, in: Proceedings of the 13th International Conference on Extending Database Technology, EDBT'10, 2010, pp. 441-452.
[8]
D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, EP-SPARQL: a unified language for event processing and stream reasoning, in: Proceedings of the 20th International Conference on World Wide Web, WWW'11, 2011, pp. 635-644.
[9]
W. Fan, A. Bifet, Mining big data: current status, and forecast to the future, SIGKDD Explor. Newsl., 14 (2013) 1-5.
[10]
A. Rodríguez-González, J. Torres-Niño, G. Hernández-Chan, E. Jiménez-Domingo, J.M. Alvarez-Rodríguez, Using agents to parallelize a medical reasoning system based on ontologies and description logics as an application case, Expert Syst. Appl., 39 (2012) 13085-13092.
[11]
A. Milenkoski, A. Iosup, S. Kounev, K. Sachs, P. Rygielski, J. Ding, W. Cirne, F. Rosenberg, Cloud Usage Patterns: A Formalism for Description of Cloud Usage Scenarios, Tech. Rep., SPEC Research Group - Cloud Working Group, 2013.
[12]
N. Kephart, Six must-have cloud management features, July 2012.
[13]
J.M.A. Rodríguez, J. Clement, J.E.L. Gayo, H. Farhan, P. Ordoñez De Pablos, Publishing Statistical Data following the Linked Open Data Principles: The Web Index Project, IGI Global, 2013.
[14]
M. Maiya, S. Dasari, R. Yadav, S. Shivaprasad, D. Milojicic, Quantifying manageability of cloud platforms, in: Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, CLOUD'12, 2012, pp. 993-995.
[15]
M. Klems, D. Bermbach, R. Weinert, A runtime quality measurement framework for cloud database service systems, in: QUATIC, 2012, pp. 38-46.
[16]
R.C. Palacios, J.L. Sánchez-Cervantes, G. Alor-Hernández, A.R. González, Linked data: perspectives for IT professionals, IJHCITP, 3 (2012) 1-12.
[17]
R. Akerkar, Big Data Computing, Taylor & Francis Group/CRC Press, 2013.
[18]
N. Marz, J. Warren, Big Data: Principles and Best Practices of Scalable Realtime Data Systems, Manning Publications Co., 2013.
[19]
M. Gualtieri, The Forrester WaveTM: Big Data Predictive Analytics Solutions, Q1 2013, Report, Forrester Inc., 2013.
[20]
A.M. Pernas, M.A.R. Dantas, Using ontology for description of grid resources, in: Proceedings of the 19th International Symposium on High Performance Computing Systems and Applications, HPCS'05, 2005, pp. 223-229.
[21]
D. Armstrong, K. Djemame, Towards quality of service in the cloud, in: Proc. of the 25th UK Performance Engineering Workshop, 2009.
[22]
J.G.R.C. Lopes, A.C.M.A. Melo, M.A.R. Dantas, C.G. Ralha, A proposal and evaluation of a mechanism for grid ontology merge, in: Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Environment, HPCS'06, 2006, pp. 2-.
[23]
J. Ejarque, M.d. Palol, I. Goiri, F. Julia, J. Guitart, J. Torres, R.M. Badia, Using semantics for resource allocation in computing service providers, in: Proceedings of the 2008 IEEE International Conference on Services Computing-Volume 2, SCC'08, 2008, pp. 583-587.
[24]
R. Grewal, P. Pateriya, A rule-based approach for effective resource provisioning in hybrid cloud environment, in: Advances in Intelligent Systems and Computing, vol. 203, Springer, Berlin Heidelberg, 2013, pp. 41-57.
[25]
F. Garcia-Sanchez, E. Fernandez-Breis, R. Valencia-Garcia, E. Jimenez, J.M. Gomez, J. Torres-Niño, D. Martinez-Maqueda, Adding semantics to software-as-a-service and cloud computing, W. Trans. on Comp., 9 (2010) 154-163.
[26]
M. Zhang, R. Ranjan, S. Nepal, M. Menzel, A. Haller, A declarative recommender system for cloud infrastructure services selection, in: GECON, 2012, pp. 102-113.
[27]
J. Carapinha, R. Bless, C. Werle, K. Miller, V. Dobrota, A. Rus, H. Grob-Lipski, H. Roessler, Quality of service in the future internet, in: Kaleidoscope: Beyond the Internet? - Innovations for Future Networks and Services, 2010 ITU-T, 2010, pp. 1-8.
[28]
H. peng Chen, S. chong Li, SRC: a service registry on cloud providing behavior-aware and QoS-aware service discovery, in: SOCA, 2010, pp. 1-4.
[29]
J. Kang, K. Sim, Cloudle: an ontology-enhanced cloud service search engine, in: Lecture Notes in Computer Science, vol. 6724, Springer, Berlin Heidelberg, 2011, pp. 416-427.
[30]
V. Nelson, V. Uma, Semantic based resource provisioning and scheduling in inter-cloud environment, in: Recent Trends in Information Technology (ICRTIT), 2012 International Conference on, 2012, pp. 250-254.http://dx.doi.org/10.1109/ICRTIT.2012.6206823.
[31]
R. Buyya, R. Ranjan, R.N. Calheiros, InterCloud: utility-oriented federation of cloud computing environments for scaling of application services, in: Proceedings of the 10th International Conference on Algorithms and Architectures for Parallel Processing-Volume Part I, ICA3PP'10, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 13-31.
[32]
G.O. Cortázar, J.J. Samper-Zapater, F. García-Sánchez, Adding Semantics to Cloud Computing to Enhance Service Discovery and Access, Tech. Rep., Spanish Ministry of Economy, 2012.
[33]
Scalable Resource Provisioning in the Cloud Using Business Metrics, 2011.
[34]
G. Cicotti, L. Coppolino, R. Cristaldi, S. D'Antonio, L. Romano, QoS monitoring in a cloud services environment: the SRT-15 approach, in: Lecture Notes in Computer Science, vol. 7155, Springer, Berlin Heidelberg, 2012, pp. 15-24.
[35]
G. Anastasi, Quality of service management in service oriented architectures, 2011.
[36]
T. Cucinotta A. Mancina G.F. Anastasi G. Lipari L. Mangeruca R. Checcozzo F. Rusina.
[37]
K. Konstanteli, D. Kyriazis, T. Varvarigou, T. Cucinotta, G. Anastasi, Real-time guarantees in flexible advance reservations, in: Proceedings of the 2009 33rd Annual IEEE International Computer Software and Applications Conference-Volume 02, COMPSAC'09, 2009, pp. 67-72.
[38]
T. Cucinotta, G. Anastasi, L. Abeni, Respecting temporal constraints in virtualised services, in: COMPSAC (2), 2009, pp. 73-78.
[39]
T. Cucinotta, S. Gogouvitis, K. Konstanteli, SLAs in virtualized cloud computing infrastructures with QoS assurance, in: Proceedings of the International Workshop on eContracting in the Clouds, co-located with the eChallenges 2011 Conference, 2011.
[40]
N.B. Mabrouk, N. Georgantas, V. Issarny, A semantic end-to-end QoS model for dynamic service oriented environments, in: Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented Systems, PESOS'09, 2009, pp. 34-41.
[41]
D. Talia, Cloud Computing and Software Agents: Towards Cloud Intelligent Services, in: WOA, 2011, pp. 2-6.
[42]
P. Haase, T. Mathäíß, M. Schmidt, A. Eberhart, U. Walther, Semantic technologies for enterprise cloud management, in: Proceedings of the 9th International Semantic Web Conference on The Semantic Web-Volume Part II, ISWC'10, 2010, pp. 98-113.
[43]
N.B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, V. Issarny, QoS-aware service composition in dynamic service oriented environments, in: Proceedings of the 10th ACM/IFIP/USENIX International Conference on Middleware, Middleware'09, 2009, pp. 7:1-7:20.
[44]
G. Cretella, B. Di Martino, V. Stankovski, Using the mOSAIC's semantic engine to design and develop civil engineering cloud applications, in: Proceedings of the 14th International Conference on Information Integration and Web-based Applications & Services, IIWAS'12, 2012, pp. 378-386.
[45]
R. Nathuji, A. Kansal, A. Ghaffarkhah, Q-clouds: managing performance interference effects for QoS-aware clouds, in: Proceedings of the 5th European Conference on Computer Systems, EuroSys'10, 2010, pp. 237-250.
[46]
H. Kim, H. Lee, W. Kim, Y. Kim, A Trust Evaluation Model for QoS Guarantee in Cloud Systems, IJGUC 3 (1).
[47]
P.M. Dew, S. Nizamani, QAComPS: a quality-aware federated computational semantic web service for computational modellers. URL http://weblidi.info.unlp.edu.ar/worldcomp2011-mirror/SWW3720.pdf.
[48]
V. Stantchev, C. Schröpfer, Negotiating and enforcing QoS and SLAs in grid and cloud computing, in: Advances in Grid and Pervasive Computing, Springer, 2009, pp. 25-35.
[49]
V. Stantchev, M. Malek, Addressing dependability throughout the soa life cycle, Services Computing, IEEE Transactions on, 4 (2011) 85-95.
[50]
A. Dastjerdi, R. Buyya, A taxonomy of QoS management and service selection methodologies for cloud computing (2011). URL http://www.cloudbus.org/papers/QoSTaxonomyCloud2011.pdf.
[51]
D. Bernstein, D. Vij, Using semantic web ontology for intercloud directories and exchanges, in: International Conference on Internet Computing, 2010, pp. 18-24.
[52]
Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou, I. Silva-Lepe, T. Mikalsen, Combining quality of service and social information for ranking services, in: Proceedings of the 7th International Joint Conference on Service-Oriented Computing, ICSOC-ServiceWave'09, 2009, pp. 561-575.
[53]
G. Damiano, E. Giallonardo, E. Zimeo, onQoS-QL: a query language for QoS-based service selection and ranking, in: Service-Oriented Computing - ICSOC 2007 Workshops, 2009, pp. 115-127.
[54]
R. Dautov, D. Kourtesis, I. Paraskakis, M. Stannett, Addressing self-management in cloud platforms: a semantic sensor web approach, in: Proceedings of the 2013 International Workshop on Hot Topics in Cloud Services, HotTopiCS'13, 2013, pp. 11-18.
[55]
D. Kourtesis, I. Paraskakis, A registry and repository system supporting cloud application platform governance, in: ICSOC Workshops, 2011, pp. 255-256.
[56]
M. d'Aquin, A. Schlicht, H. Stuckenschmidt, M. Sabou, Ontology modularization for knowledge selection: experiments and evaluations, in: DEXA, 2007, pp. 874-883.
[57]
M. Sabou, M. Fernández, E. Motta, Evaluating semantic relations by exploring ontologies on the semantic web, in: NLDB, 2009, pp. 269-280.
[58]
G. Albaum, The Likert scale revisited, Journal of Market Research Society, 39 (1997) 331-348.
[59]
H. Yoo, C. Hur, S. Kim, Y. Kim, An ontology-based resource selection service on science cloud, in: Communications in Computer and Information Science, vol. 63, 2009, pp. 221.
[60]
D. Le-Phuoc, J.X. Parreira, M. Hausenblas, M. Hauswirth, Unifying Stream Data and Linked Open Data, Tech. Rep., DERI, 2010.
[61]
O. Consortium, Sensor Web Enablement (May 2013). URL http://www.opengeospatial.org/projects/groups/sensorweb.
[62]
EEML, Extended Environments Markup Language (EEML) (May 2013). URL http://www.eeml.org.
[63]
A. Sheth, C. Henson, S.S. Sahoo, Semantic sensor web, IEEE Internet Computing, 12 (2008) 78-83.
[64]
K. Whitehouse, F. Zhao, J. Liu, Semantic streams: a framework for composable semantic interpretation of sensor data, in: Proceedings of the Third European conference on Wireless Sensor Networks, EWSN'06, 2006, pp. 5-20.
[65]
E. Bouillet, M. Feblowitz, Z. Liu, A. Ranganathan, A. Riabov, F. Ye, A semantics-based middleware for utilizing heterogeneous sensor networks, in: Proceedings of the 3rd IEEE International Conference on Distributed Computing in Sensor Systems, DCOSS'07, 2007, pp. 174-188.
[66]
M. Compton, P. Barnaghi, L. Bermudez, R. GarcíA-Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W.D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, K. Taylor, Ontology paper: the SSN ontology of the W3C semantic sensor network incubator group, Web Semant., 17 (2012) 25-32.
[67]
M. Hausenblas, J. Nadeau, Apache drill: interactive Ad-Hoc analysis at scale, Big Data.
[68]
C. Inc., Cloudera impala: real-time queries in apache hadoop (May 2013). URL http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html.
[69]
M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters, in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, USENIX Association, 2012, pp. 10-10.
[70]
K. Ousterhout, P. Wendell, M. Zaharia, I. STO-ICA, Sparrow: Scalable Scheduling for Sub-Second Parallel Jobs, Tech. Rep. UCB/EECS-2013-29, EECS Department, University of California, Berkeley, 2013.
[71]
R.S. Xin, J. Rosen, M. Zaharia, M.J. Franklin, S. Shenker, I. Stoica, Shark: SQL and rich analytics at scale, in: SIGMOD Conference, 2013, pp. 13-24.
[72]
L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing platform, in: Data Mining Workshops, ICDMW, 2010 IEEE International Conference on, IEEE, 2010, pp. 170-177.
[73]
F. Yang, E. Tschetter, G. Merlino, N. Ray, X. Léauté, D. Ganguli, Druid: A Real-time Analytical Data Store.
[74]
M. Inc., MapR: Apache Hadoop Solutions For Big Data, May 2013. URL http://www.mapr.com/.
[75]
E.D.V. Jeff, Z. Pan, Stream Reasoning For Linked Data. Tutorial at SemTech 2012, 2012. URL http://streamreasoning.org/events/sr4ld2011.
[76]
N. Backman, R. Fonseca, U. Çetintemel, Managing parallelism for stream processing in the cloud, in: Proceedings of the 1st International Workshop on Hot Topics in Cloud Data Processing, HotCDP'12, 2012, pp. 1:1-1:5.
[77]
J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, H.E. Bal, WebPIE: a web-scale parallel inference engine using MapReduce, J. Web Sem., 10 (2012) 59-75.
[78]
J. Urbani, F. van Harmelen, S. Schlobach, H. Bal, QueryPIE: backward reasoning for OWL horst over very large knowledge bases, in: Proceedings of the 10th International Conference on The Semantic Web-Volume Part I, ISWC'11, 2011, pp. 730-745.
[79]
A. Hogan, A. Harth, A. Polleres, Scalable authoritative OWL reasoning for the web, Int. J. Semantic Web Inf. Syst., 5 (2009) 49-90.
[80]
J. Umbrich, A. Hogan, A. Polleres, S. Decker, Improving the recall of live linked data querying through reasoning, in: Proceedings of the 6th International Conference on Web Reasoning and Rule Systems, RR'12, 2012, pp. 188-204.
[81]
J. Umbrich, M. Karnstedt, A. Hogan, J.X. Parreira, Freshening up while staying fast: towards hybrid SPARQL queries, in: Proceedings of the 18th International Conference on Knowledge Engineering and Knowledge Management, EKAW'12, 2012, pp. 164-174.
[82]
J. Huang, D.J. Abadi, K. Ren, Scalable SPARQL querying of large RDF graphs, PVLDB, 4 (2011) 1123-1134.
[83]
A. Schätzle, M. Przyjaciel-Zablocki, G. Lausen, PigSPARQL: mapping SPARQL to Pig Latin, in: Proceedings of the International Workshop on Semantic Web Information Management, SWIM'11, 2011, pp. 4:1-4:8.
[84]
C. Liu, J. Qu, G. Qi, H. Wang, Y. Yu, Hadoopsparql: a hadoop-based engine for multiple sparql query answering, in: Proceedings of th 9th Extended Semantic Web Conference, 2012.
[85]
M. Farhan Husain, P. Doshi, L. Khan, B. Thuraisingham, Storage and retrieval of large RDF graph using Hadoop and MapReduce, in: Proceedings of the 1st International Conference on Cloud Computing, CloudCom'09, 2009, pp. 680-686.
[86]
N. Papailiou, I. Konstantinou, D. Tsoumakos, N. Koziris, H2RDF: adaptive query processing on RDF data in the cloud, in: Proceedings of the 21st International Conference Companion on World Wide Web, WWW'12 Companion, 2012, pp. 397-400.
[87]
V. Khadilkar, M. Kantarcioglu, B.M. Thuraisingham, P. Castagna, Jena-hbase: a distributed, scalable and effcient rdf triple store, in: International Semantic Web Conference, Posters & Demos, 2012.
[88]
J.J.H. Maindonald, Data Analysis and Graphics Using R Electronic Resource}: An Example-Based Approach, Vol. 10, Cambridge University Press, 2007.
[89]
S. Vijayakumar, Q. Zhu, G. Agrawal, Dynamic resource provisioning for data streaming applications in a cloud environment, in: CloudCom, 2010, pp. 441-448.
[90]
C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A framework for clustering evolving data streams, in: Proceedings of the 29th International Conference on Very Large Data Bases-Volume 29, VLDB'03, 2003, pp. 81-92.
[91]
S. Schneider, H. Andrade, B. Gedik, A. Biem, K.-L. Wu, Elastic scaling of data parallel operators in stream processing, in: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing, IPDPS'09, 2009, pp. 1-12.
[92]
A. Ishii, T. Suzumura, Elastic stream computing with clouds, in: Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing, CLOUD'11, 2011, pp. 195-202.
[93]
C.C. Patterns, Watchdog: high availability with unreliable compute nodes, 2013. URL http://cloudcomputingpatterns.org/?page_id=278.
[94]
M.G. Rodríguez, J.M.Á. Rodríguez, D.B. Muñoz, L.P. Paredes, J.E.L. Gayo, P.O. de Pablos, Towards a practical solution for data grounding in a semantic web services environment, J. UCS, 18 (2012) 1576-1597.
[95]
N.A. Rakhmawati, J. Umbrich, M. Karnstedt, A. Hasnain, M. Hausenblas, Querying over federated SPARQL endpoints - a state of the art survey, CoRR abs/1306.1723.
[96]
A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, FedX: a federation layer for distributed query processing on linked open data, in: ESWC (2), 2011, pp. 481-486.
[97]
S.K. Garg, S. Versteeg, R. Buyya, A framework for ranking of cloud computing services, Future Generation Comp. Syst., 29 (2013) 1012-1023.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Future Generation Computer Systems
Future Generation Computer Systems  Volume 32, Issue C
March 2014
347 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 March 2014

Author Tags

  1. Big data
  2. Cloud systems
  3. Linked data
  4. Ontologies
  5. Quality of service
  6. Semantics
  7. Sensor data
  8. Service oriented architectures

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Improving scheduling efficiency by probabilistic execution time model in cloud environmentsInternational Journal of Networking and Virtual Organisations10.1504/IJNVO.2018.09365118:4(307-322)Online publication date: 1-Jan-2018
  • (2016)The Smart Health Initiative in ChinaJournal of Medical Systems10.1007/s10916-015-0416-y40:3(1-17)Online publication date: 1-Mar-2016
  • (2016)Cloud resource provisioningKnowledge and Information Systems10.1007/s10115-016-0922-349:3(1005-1069)Online publication date: 1-Dec-2016
  • (2015)Search-based QoS ranking prediction for web services in cloud environmentsFuture Generation Computer Systems10.1016/j.future.2015.01.00850:C(111-126)Online publication date: 1-Sep-2015
  • (2014)Special issue on exploiting semantic technologies with particularization on linked data over grid and cloud architecturesFuture Generation Computer Systems10.5555/2748143.274837432:C(260-262)Online publication date: 1-Mar-2014
  • (2014)PGSW-OSThe Journal of Supercomputing10.1007/s11227-014-1221-y69:2(955-975)Online publication date: 1-Aug-2014

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media