Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Operator Preconditioning

Published: 01 September 2006 Publication History

Abstract

Operator preconditioning offers a general recipe for constructing preconditioners for discrete linear operators that have arisen from a Galerkin approach. The key idea is to employ matching Galerkin discretizations of operators of complementary mapping properties. If these can be found, the resulting preconditioners will be robust with respect to the choice of the bases for trial and test spaces. I survey the application of operator preconditioning to finite elements and boundary elements.

References

[1]
Hackbusch, W., Iterative Solution of Large Sparse Systems of Equations, Volume 95 of Applied Mathematical Sciences. Springer-Verlag, New York.
[2]
Arnold, D.N., Falk, R.S. and Winther, R., Preconditioning in H(div) and applications. Math. Comp. v66. 957-984.
[3]
Powell, C.E. and Silvester, D., Optimal preconditioning for Raviart-Thomas mixed formulation of second-order elliptic problems. SIAM J. Matrix. Anal. Applications. v25 i3. 718-738.
[4]
Steinbach, O. and Wendland, W., The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math. v9. 191-216.
[5]
McLean, W. and Tran, T., A preconditioning strategy for boundary element Galerkin methods. Numer. Meth. Part. Diff. Equ. v13. 283-301.
[6]
Christiansen, S.H. and Nédélec, J.-C., Des préconditionneurs pour la résolution numérique des équations intégrales de frontiére de l'electromagnétisme. C.R. Acad. Sci. Paris, Ser. I Math. v31 i9. 617-622.
[7]
Christiansen, S.H. and Nédélec, J.-C., Des préconditionneurs pour la résolution numérique des équations intégrales de frontiére de l'acoustique. C.R. Acad. Sci. Paris, Ser. I Math. v330 i7. 617-622.
[8]
Rudin, W., Functional Analysis. 1st edition. McGraw-Hill.
[9]
Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods. Springer.
[10]
Hiptmair, R. and Hoppe, R.H.W., Multilevel preconditioning for mixed problems in three dimensions. Numer. Math. v82 i2. 253-279.
[11]
Braess, D., Finite Elements. Second Edition. Cambridge University Press.
[12]
Xu, J., Iterative methods by space decomposition and subspace correction. SIAM Review. v34. 581-613.
[13]
Bossavit, A., Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements, Volume 2 of Electromagnetism Series. Academic Press, San Diego, CA.
[14]
Sauter, S. and Schwab, C., Randelementmethoden. BG Teubner, Stuttgart.
[15]
Buffa, A. and Hiptmair, R., Galerkin boundary element methods for electromagnetic scattering. In: Ainsworth, M., Davis, P., Duncan, D., Martin, P., Rynne, B. (Eds.), Topics in Computational Wave Propagation. Direct and Inverse Problems, Volume 31 of Lecture Notes in Computational Science and Engineering, Springer, Berlin. pp. 83-124.
[16]
Steinbach, O., On a generalized L2 projection and some related stability estimates in Sobolev spaces. Numer. Math. v90. 775-786.
[17]
Hiptmair, R., Discrete Hodge operators. Numer. Math. v90. 265-289.
[18]
Bramble, J. and Xu, J., Some estimates for a weighted L2-projection. Math. Comp. v56 i194. 463-476.
[19]
Hiptmair, R. and Schwab, C., Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. v40 i1. 66-86.
[20]
Buffa, A. and Christiansen, S.A., The electric field integral equation on Lipschitz screens: Definition and numerical approximation. Numer. Math. v94 i2. 167-229.
[21]
Christiansen, S.H. and Nédélec, J.-C., A preconditioner for the electric field integral equation based on Calderón formulas. SIAM J. Numer. Anal. v40 i3. 1100-1135.
[22]
Buffa, A. and Christiansen, S.H., A dual finite element complex on the barycentric refinement. C.R. Acad. Sci Paris, Ser.I. v340. 461-464.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers & Mathematics with Applications
Computers & Mathematics with Applications  Volume 52, Issue 5
September, 2006
221 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 September 2006

Author Tags

  1. Boundary elements
  2. Duality
  3. Finite elements
  4. Galerkin discretization
  5. Operator preconditioning

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A Unified Theory of Non-overlapping Robin–Schwarz Methods: Continuous and Discrete, Including Cross PointsJournal of Scientific Computing10.1007/s10915-023-02248-996:2Online publication date: 6-Jul-2023
  • (2022)Numerical approximation of the spectrum of self-adjoint operators in operator preconditioningNumerical Algorithms10.1007/s11075-022-01263-591:1(301-325)Online publication date: 1-Sep-2022
  • (2022)Stable multilevel splittings of boundary edge element spacesBIT10.1007/s10543-012-0369-152:3(661-685)Online publication date: 11-Mar-2022
  • (2021)Optimal operator preconditioning for pseudodifferential boundary problemsNumerische Mathematik10.1007/s00211-021-01193-9148:1(1-41)Online publication date: 1-May-2021
  • (2021)New preconditioners for the Laplace and Helmholtz integral equations on open curves: analytical framework and numerical resultsNumerische Mathematik10.1007/s00211-021-01189-5148:2(255-292)Online publication date: 1-Jun-2021
  • (2020)Two-level preconditioning for -version boundary element approximation of hypersingular operator with GenEONumerische Mathematik10.1007/s00211-020-01149-5146:3(597-628)Online publication date: 1-Nov-2020
  • (2019)Decomposition into subspaces preconditioning: abstract frameworkNumerical Algorithms10.1007/s11075-019-00671-483:1(57-98)Online publication date: 4-Feb-2019
  • (2018)Estimating and localizing the algebraic and total numerical errors using flux reconstructionsNumerische Mathematik10.1007/s00211-017-0915-5138:3(681-721)Online publication date: 1-Mar-2018
  • (2017)Second-kind boundary integral equations for electromagnetic scattering at composite objectsComputers & Mathematics with Applications10.1016/j.camwa.2017.08.01474:11(2650-2670)Online publication date: 1-Dec-2017
  • (2017)Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problemsNumerical Algorithms10.1007/s11075-016-0136-574:1(19-37)Online publication date: 1-Jan-2017
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media