Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1987260.1987287guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Secure two-party computation via cut-and-choose oblivious transfer

Published: 28 March 2011 Publication History

Abstract

Protocols for secure two-party computation enable a pair of parties to compute a function of their inputs while preserving security properties such as privacy, correctness and independence of inputs. Recently, a number of protocols have been proposed for the efficient construction of two-party computation secure in the presence of malicious adversaries (where security is proven under the standard simulationbased ideal/real model paradigm for defining security). In this paper, we present a protocol for this task that follows the methodology of using cut-and-choose to boost Yao's protocol to be secure in the presence of malicious adversaries. Relying on specific assumptions (DDH), we construct a protocol that is significantly more efficient and far simpler than the protocol of Lindell and Pinkas (Eurocrypt 2007) that follows the same methodology. We provide an exact, concrete analysis of the efficiency of our scheme and demonstrate that (at least for not very small circuits) our protocol is more efficient than any other known today.

References

[1]
Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. Journal of Cryptology 23(2), 281-343 (2010)
[2]
Beaver, D.: Foundations of Secure Interactive Computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377-391. Springer, Heidelberg (1992)
[3]
Canetti, R.: Security and Composition of Multi-party Cryptographic Protocols. Journal of Cryptology 13(1), 143-202 (2000)
[4]
Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: 42nd FOCS, pp. 136-145 (2001), Full version http://eprint.iacr.org/2000/067
[5]
Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19-40. Springer, Heidelberg (2001)
[6]
Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. JCSS 18(2), 143- 154 (1979)
[7]
Cramer, R., Damgård, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174-187. Springer, Heidelberg (1994)
[8]
Damgård, I.: On S Protocols, http://www.daimi.au.dk/~ivan/Sigma.pdf
[9]
Dodis, Y., Shoup, V., Walfish, S.: Efficient Constructions of Composable Commitments and Zero-Knowledge Proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515-535. Springer, Heidelberg (2008)
[10]
Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494-510. Springer, Heidelberg (2004)
[11]
Garay, J., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols Using Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177-194. Springer, Heidelberg (2003)
[12]
Goldreich, O.: Foundations of Cryptography: Volume 2 - Basic Applications. Cambridge University Press, Cambridge (2004)
[13]
Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game - A Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp. 218-229 (1987), For details see {12, Chapter 7}
[14]
Goldwasser, S., Levin, L.: Fair Computation of General Functions in Presence of Immoral Majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77-93. Springer, Heidelberg (1991)
[15]
Goyal, V., Mohassel, P., Smith, A.: Efficient Two Party and Multi Party Computation Against Covert Adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 289-306. Springer, Heidelberg (2008)
[16]
Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of a Pseudo-random Generator from any One-way Function. SIAM Journal on Computing 28(4), 1364- 1396 (1999)
[17]
Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 312-331. Springer, Heidelberg (2010)
[18]
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer - Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572-591. Springer, Heidelberg (2008)
[19]
Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No Honest Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294-314. Springer, Heidelberg (2009)
[20]
Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97-114. Springer, Heidelberg (2007)
[21]
Kiraz, M., Schoenmakers, B.: A Protocol Issue for the Malicious Case of Yao's Garbled Circuit Construction. In: Proceedings of 27th Symposium on Information Theory in the Benelux, pp. 283-290 (2006)
[22]
Lindell, Y.: Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Journal of Cryptology 16(3), 143-184 (2003)
[23]
Lindell, Y., Pinkas, B.: A Proof of Yao's Protocol for Secure Two-Party Computation. The Journal of Cryptology 22(2), 161-188 (2009)
[24]
Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52-78. Springer, Heidelberg (2007)
[25]
MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382- 400. Springer, Heidelberg (2004)
[26]
Micali, S., Rogaway, P.: Secure Computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392-404. Springer, Heidelberg (1992)
[27]
Naor, M., Reingold, O.: Synthesizers and Their Application to the Parallel Construction of Psuedo-Random Functions. In: 36th FOCS, pp. 170-181 (1995)
[28]
Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368-386. Springer, Heidelberg (2009)
[29]
Orlandi, C.: Personal communication (2010)
[30]
Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554-571. Springer, Heidelberg (2008)
[31]
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250-267. Springer, Heidelberg (2009)
[32]
Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612-613 (1979)
[33]
Yao, A.C.: How to Generate and Exchange Secrets. In: 27th FOCS, pp. 162-167 (1986)

Cited By

View all
  • (2023)Authenticated private information retrievalProceedings of the 32nd USENIX Conference on Security Symposium10.5555/3620237.3620452(3835-3851)Online publication date: 9-Aug-2023
  • (2019)A Hybrid Approach to Secure Function Evaluation using SGXProceedings of the 2019 ACM Asia Conference on Computer and Communications Security10.1145/3321705.3329835(100-113)Online publication date: 2-Jul-2019
  • (2019)Efficient RSA Key Generation and Threshold Paillier in the Two-Party SettingJournal of Cryptology10.1007/s00145-017-9275-732:2(265-323)Online publication date: 1-Apr-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
TCC'11: Proceedings of the 8th conference on Theory of cryptography
March 2011
629 pages
ISBN:9783642195709
  • Editor:
  • Yuval Ishai

Sponsors

  • IACR: International Association for Cryptologic Research

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 28 March 2011

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Authenticated private information retrievalProceedings of the 32nd USENIX Conference on Security Symposium10.5555/3620237.3620452(3835-3851)Online publication date: 9-Aug-2023
  • (2019)A Hybrid Approach to Secure Function Evaluation using SGXProceedings of the 2019 ACM Asia Conference on Computer and Communications Security10.1145/3321705.3329835(100-113)Online publication date: 2-Jul-2019
  • (2019)Efficient RSA Key Generation and Threshold Paillier in the Two-Party SettingJournal of Cryptology10.1007/s00145-017-9275-732:2(265-323)Online publication date: 1-Apr-2019
  • (2018)Oblivious Polynomial Evaluation and Secure Set-Intersection from Algebraic PRFsJournal of Cryptology10.1007/s00145-017-9263-y31:2(537-586)Online publication date: 1-Apr-2018
  • (2017)Private matching and set intersection computation in multi-agent and industrial control systemsProceedings of the 12th Annual Conference on Cyber and Information Security Research10.1145/3064814.3064817(1-6)Online publication date: 4-Apr-2017
  • (2017)More Efficient Oblivious Transfer ExtensionsJournal of Cryptology10.1007/s00145-016-9236-630:3(805-858)Online publication date: 1-Jul-2017
  • (2016)The Exact Round Complexity of Secure ComputationProceedings, Part II, of the 35th Annual International Conference on Advances in Cryptology --- EUROCRYPT 2016 - Volume 966610.5555/3081738.3081754(448-476)Online publication date: 8-May-2016
  • (2016)Secure Stable Matching at ScaleProceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security10.1145/2976749.2978373(1602-1613)Online publication date: 24-Oct-2016
  • (2016)Fast Cut-and-Choose-Based Protocols for Malicious and Covert AdversariesJournal of Cryptology10.1007/s00145-015-9198-029:2(456-490)Online publication date: 1-Apr-2016
  • (2016)Automata Evaluation and Text Search Protocols with Simulation-Based SecurityJournal of Cryptology10.1007/s00145-014-9193-x29:2(243-282)Online publication date: 1-Apr-2016
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media