Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1987637.1987648guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Preference-driven co-evolutionary algorithms show promise for many-objective optimisation

Published: 05 April 2011 Publication History

Abstract

The simultaneous optimisation of four or more conflicting objectives is now recognised as a challenge for evolutionary algorithms seeking to obtain full representations of trade-off surfaces for the purposes of a posteriori decision-making. Whilst there is evidence that some approaches can outperform both random search and standard Paretobased methods, best-in-class algorithms have yet to be identified. We consider the concept of co-evolving a population of decision-maker preferences as a basis for determining the fitness of competing candidate solutions. The concept is realised using an existing co-evolutionary approach based on goal vectors. We compare this approach and a variant to three realistic alternatives, within a common optimiser framework. The empirical analysis follows current best practice in the field. As the number of objectives is increased, the preference-driven co-evolutionary approaches tend to outperform the alternatives, according to the hypervolume indicator, and so make a strong claim for further attention in many-objective studies.

References

[1]
Bentley, P.J., Wakefield, J.P.: Finding acceptable solutions in the Pareto-optimal range using multiobjective genetic algorithms. In: Chawdhry, P.K., Roy, R., Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 231-240. Springer, Heidelberg (1997).
[2]
Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174-188 (2003).
[3]
Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E.: On handling a large number of objectives a posteriori and during optimization. In: Knowles, J., Corne, D., Deb, K. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 377-403. Springer, Heidelberg (2008).
[4]
Corne, D., Knowles, J.: Techniques for highly multiobjective optimisation: Some nondominated points are better than others. In: Proceedings of GECCO 2007, pp. 773-780 (2007).
[5]
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197 (2002).
[6]
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001).
[7]
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation, vol. 1, pp. 825-830 (2002).
[8]
Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithms made easy: Selection, sharing and mating restriction. In: Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 42-52 (1995).
[9]
Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.- M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584-593. Springer, Heidelberg (1996).
[10]
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms -- part I: A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 28(1), 26-37 (1998).
[11]
Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: Proceedings of the 2006 Congress on Evolutionary Computation, pp. 1157-1163 (2006).
[12]
Goldberg, D.: The race, the hurdle and the sweet spot. In: Bentley, P. (ed.) Evolutionary Design by Computers, pp. 105-118. Morgan Kaufmann, San Francisco (1999).
[13]
Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley, New York (1999).
[14]
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477-506 (2006).
[15]
Hughes, E.J.: MSOPS-II: A general-purpose many-objective optimiser. In: Proceedings of the 2007 Congress on Evolutionary Computation, pp. 3944-3951 (2007).
[16]
Hughes, E.J.: Fitness assignment methods for many-objective problems. In: Knowles, J., Corne, D., Deb, K. (eds.) Multiobjective Problem Solving from Nature. Natural Computing Series, pp. 307-329. Springer, Heidelberg (2008).
[17]
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: Proceedings of the 2008 Congress on Evolutionary Computation, pp. 2419-2426 (2008).
[18]
Kleeman, M.P., Lamont, G.B.: Coevolutionary multi-objective EAs: The next frontier? In: Proceedings of the 2006 Congress on Evolutionary Computation, pp. 1726- 1735 (2006).
[19]
Lohn, J.D., Kraus, W.F., Haith, G.L.: Comparing a coevolutionary genetic algorithm for multiobjective optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 1157-1162 (2002).
[20]
Manly, B.F.J.: Randomization and Monte Carlo Methods in Biology. Chapman and Hall, Boca Raton (1991).
[21]
Purshouse, R.C., Fleming, P.J.: An adaptive divide-and-conquer methodology for evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 133-147. Springer, Heidelberg (2003).
[22]
Purshouse, R.C., Fleming, P.J.: Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 16-30. Springer, Heidelberg (2003).
[23]
Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation 11(6), 770-784 (2007).
[24]
Rachmawati, L., Srinivasan, D.: Preference incorporation in multi-objective evolutionary algorithms: A survey. In: Proceedings of the 2006 Congress on Evolutionary Computation, pp. 962-968 (2006).
[25]
Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742-756. Springer, Heidelberg (2007).
[26]
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173-195 (2000).
[27]
Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Deb, K., Miettinen, K., Słowinski, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 373-404. Springer, Heidelberg (2008).
[28]
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117-132 (2003).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
EMO'11: Proceedings of the 6th international conference on Evolutionary multi-criterion optimization
April 2011
618 pages
ISBN:9783642198922
  • Editors:
  • Ricardo H. C. Takahashi,
  • Kalyanmoy Deb,
  • Elizabeth F. Wanner,
  • Salvatore Greco

Sponsors

  • CEMIG: Companhia Energética de Minas Gerais (CEMIG)
  • FAPEMIG: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
  • SBC: Sociedade Brasileira de Computação
  • CONACyT: Consejo Nacional de Ciencia y Tecnología
  • EMBRAER: Empresa Brasileira de Aeronáutica (EMBRAER)

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 April 2011

Author Tags

  1. co-evolution
  2. comparative study
  3. many-objective optimisation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2015)Many-Objective Evolutionary AlgorithmsACM Computing Surveys10.1145/279298448:1(1-35)Online publication date: 29-Sep-2015
  • (2015)Bi-goal evolution for many-objective optimization problemsArtificial Intelligence10.1016/j.artint.2015.06.007228:C(45-65)Online publication date: 1-Nov-2015
  • (2014)Physical programming for preference driven evolutionary multi-objective optimizationApplied Soft Computing10.1016/j.asoc.2014.07.00924:C(341-362)Online publication date: 1-Nov-2014
  • (2013)Iterated multi-swarmProceedings of the 15th annual conference on Genetic and evolutionary computation10.1145/2463372.2463447(583-590)Online publication date: 6-Jul-2013
  • (2013)On finding well-spread pareto optimal solutions by preference-inspired co-evolutionary algorithmProceedings of the 15th annual conference on Genetic and evolutionary computation10.1145/2463372.2463444(695-702)Online publication date: 6-Jul-2013
  • (2012)Local preference-inspired co-evolutionary algorithmsProceedings of the 14th annual conference on Genetic and evolutionary computation10.1145/2330163.2330236(513-520)Online publication date: 7-Jul-2012

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media