Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1928328.1928358guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Mining large query induced graphs towards a hierarchical query folksonomy

Published: 11 October 2010 Publication History

Abstract

The human interaction through the web generates both implicit and explicit knowledge. An example of an implicit contribution is searching, as people contribute with their knowledge by clicking on retrieved documents. Thus, an important and interesting challenge is to extract semantic relations among queries and their terms from query logs. In this paper we present and discuss results on mining large query log induced graphs, and how they contribute to query classification and to understand user intent and interest. Our approach consists on efficiently obtaining a hierarchical clustering for such graphs and, then, a hierarchical query folksonomy. Results obtained with real data provide interesting insights on semantic relations among queries and are compared with conventional taxonomies, namely the ODP categorization.

References

[1]
Baeza-Yates, R.: Applications of web query mining. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 7-22. Springer, Heidelberg (2005).
[2]
Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query clustering for boosting web page ranking. In: Favela, J., Menasalvas, E., Chávez, E. (eds.) AWIC 2004. LNCS (LNAI), vol. 3034, pp. 164-175. Springer, Heidelberg (2004).
[3]
Baeza-Yates, R.A., Tiberi, A.: Extracting semantic relations from query logs. In: SIGKDD, pp. 76-85. ACM, New York (2007).
[4]
Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: SIGKDD. ACM, New York (1999).
[5]
Chuang, S.L., Chien, L.F.: Towards automatic generation of query taxonomy: A hierarchical query clustering approach. In: IEEE International Conference on Data Mining. IEEE, Los Alamitos (2002).
[6]
Chuang, S.L., Chien., L.F.: Automatic query taxonomy generation for information retrieval applications. Online Information Review 27(5) (2003).
[7]
Chuang, S.L., Chien, L.F.: Enriching web taxonomies through subject categorization of query terms from search engine logs. Decision Support System 30(1) (2003).
[8]
Chung, F.: The heat kernel as the pagerank of a graph. Proceedings of the National Academy of Sciences 104(50), 19735 (2007).
[9]
Fortunato, S.: Community detection in graphs. Physics Reports 486, 75-174 (2010).
[10]
Francisco, A.P., Baeza-Yates, R., Oliveira, A.L.: Clique analysis of query log graphs. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 188- 199. Springer, Heidelberg (2008).
[11]
Francisco, A.P., Baeza-Yates, R., Oliveira, A.L.: Mining query logs induced graphs. Tech. Rep. 36/2010, INESC-ID (2010).
[12]
Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: Natural cluster sizes and the absence of large well-define clusters. arXiv:0810.1355 (2008).
[13]
Shen, D., Qin, M., Chen, W., Yang, Q., Chen, Z.: Mining Web Query Hierarchies from Clickthrough Data. In: AAAI 2007, pp. 341-346. AAAI Press, Menlo Park (2007).
[14]
Wei, F., Qian, W., Wang, C., Zhou, A.: Detecting Overlapping Community Structures in Networks. World Wide Web 12(2), 235-261 (2009).
[15]
Wen, J., Mie, J., Zhang, H.: Clustering user queries of a search engine. In: Proc. of the 10th International World Wide Web Conference. W3C (2001).
[16]
Zaiane, O.R., Strilets, A.: Finding similar queries to satisfy searches based on query traces. In: Efficient Web-Based Information Systems (EWIS) (2002).

Index Terms

  1. Mining large query induced graphs towards a hierarchical query folksonomy

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    SPIRE'10: Proceedings of the 17th international conference on String processing and information retrieval
    October 2010
    407 pages
    ISBN:3642163203
    • Editors:
    • Edgar Chavez,
    • Stefano Lonardi

    Sponsors

    • Yahoo! Research
    • CONACyT: Consejo Nacional de Ciencia y Tecnología
    • Universidad Michoacana

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 11 October 2010

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 28 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media