Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1927099.1927146guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Fuzzy logic controllers optimization using genetic algorithms and particle swarm optimization

Published: 08 November 2010 Publication History

Abstract

In this paper we apply to Bio-inspired and evolutionary optimization methods to design fuzzy logic controllers (FLC) to minimize the steady state error of linear systems. We test the optimal FLC obtained by the genetic algorithms and the PSO applied on linear systems using benchmark plants. The bioinspired and the evolutionary methods are used to find the parameters of the membership functions of the FLC to obtain the optimal controller. Simulation results are obtained with Simulink showing the feasibility of the proposed approach.

References

[1]
Engelbretht, A.P.: Fundamentals of Computational Swarm Intelligence, pp. 5-129. John Wiley & Sons Ltd., England (2005).
[2]
Melin, P., Castillo, O.: A New Method for Adaptive Control of Non-Linear Plants Using Type-2 Fuzzy Logic and Neural Networks. International Journal of General Systems 1563- 5104 33(2), 289-304 (2004).
[3]
Sepúlveda, R., Montiel, O., Castillo, O., Melin, P.: Optimizing the MFs in Type-2 Fuzzy Logic Controllers. Using the Human Evolutionary Model International Review of Automatic Control (IREACO) Theory and Applications 3(1), 1-10 (2010).
[4]
Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39-43 (1995); Lu, J.-G.: Title of paper with only the first word capitalized. J. Name Stand. Abbrev (in press).
[5]
Fogel, D.B.: An introduction to simulated evolutionary optimization. IEEE Transactions on Neural Networks 5(1), 3-14 (1994).
[6]
Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Proceedings 1998 IEEE World Congress on Computational Intelligence, Anchorage, Alaska, IEEE, Los Alamitos (1998).
[7]
Kennedy, J., Mendes, R.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58-73 (2002).
[8]
Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceeding of IEEE Conference on Evolutionary Computation, pp. 1671-1676 (2002).
[9]
Angeline, P.J.: Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601-610. Springer, Heidelberg (1998).
[10]
Alcalá, R., Alcalá-Fdez, J., Herrera, F.: A proposal for the Genetic Lateral Tuning of Linguistic Fuzzy Systems and its Interaction with Rule Selection. IEEE Transactions on Fuzzy Systems 15(4), 616-635 (2007).
[11]
Alcalá, R., Gacto, M.J., Herrera, F., Alcalá-Fdez, J.: A Multi-objective Genetic Algorithm for Tuning and Rule Selection to Obtain Accurate and Compact Linguistic Fuzzy Rule-Based Systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(5), 539-557 (2007).
[12]
Casillas, J., Cordon, O., del Jesús, M.J., Herrera, F.: Genetic Tuning of Fuzzy Rule Deep Structures Preserving Interpretability and its Interaction with Fuzzy Rule Set Reduction. IEEE Transaction on Fuzzy Systems 13(1), 13-29 (2005).
[13]
Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten Years of Genetic Fuzzy Systems: Current Framework and New trends. Fuzzy Sets and Systems 141(1), 5- 31 (2004).
[14]
Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern recognition. World Scientific, Singapore (1996).
[15]
Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer, Berlin (1993).
[16]
Fukao, T., Nakagawa, H., Adachi, N.: Adaptive Tracking Control of a NonHolonomic Mobile Robot. IEEE Trans. On Robotics and Automation 16(5), 609-615 (2000).
[17]
Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. on Fuzzy Systems 8(5), 535-550 (2000).
[18]
Lee, T.H., Leung, F.H.F., Tam, P.K.S.: Position Control for Wheeled Mobile Robot Using a Fuzzy Controller, pp. 525-528. IEEE, Los Alamitos (1999).
[19]
Pedrycz, W. (ed.): Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996).
[20]
Martinez, R., Castillo, O., Aguilar, L.T., Rodriguez, A.: Evolutionary Optimization of type-2 Fuzzy Systems Applied to Linear Plants. To appear in System, Man, and Cybernetic Conference (2009).
[21]
Martinez, R., Castillo, O., Aguilar, L.T.: Intelligent Control For A Perturbed Autonomous Wheeled Mobile Robot Using Type-2 Fuzzy Logic and Genetic Algorithms. Journal of Automation, Mobile Robotics & Intelligent Systems 2 (2008); Wilkinson, J.P.: Nonlinear resonant circuit devices (Patent style), U.S. Patent 3 624 12 (July 16, 1990).

Cited By

View all
  • (2018)Hybrid FGWO Based FLCs Modeling for Performance Enhancement in Wireless Body Area NetworksWireless Personal Communications: An International Journal10.1007/s11277-018-5626-4100:3(1163-1199)Online publication date: 1-Jun-2018
  • (2017)Automatic design of fuzzy logic controllers for medium access control in wireless body area networks An evolutionary approachApplied Soft Computing10.1016/j.asoc.2017.02.02256:C(245-261)Online publication date: 1-Jul-2017
  • (2016)Application of Soft-computing Technologies to the Traffic Control System Design ProblemsProcedia Computer Science10.1016/j.procs.2016.09.440102:C(540-546)Online publication date: 1-Dec-2016

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
MICAI'10: Proceedings of the 9th Mexican international conference on Artificial intelligence conference on Advances in soft computing: Part II
November 2010
514 pages
ISBN:3642167721
  • Editors:
  • Grigori Sidorov,
  • Arturo Hernández Aguirre,
  • Carlos Alberto Reyes García

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 08 November 2010

Author Tags

  1. fuzzy logic controllers
  2. genetic algorithms
  3. optimization
  4. particle swarm

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2018)Hybrid FGWO Based FLCs Modeling for Performance Enhancement in Wireless Body Area NetworksWireless Personal Communications: An International Journal10.1007/s11277-018-5626-4100:3(1163-1199)Online publication date: 1-Jun-2018
  • (2017)Automatic design of fuzzy logic controllers for medium access control in wireless body area networks An evolutionary approachApplied Soft Computing10.1016/j.asoc.2017.02.02256:C(245-261)Online publication date: 1-Jul-2017
  • (2016)Application of Soft-computing Technologies to the Traffic Control System Design ProblemsProcedia Computer Science10.1016/j.procs.2016.09.440102:C(540-546)Online publication date: 1-Dec-2016

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media