Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1885332.1885335guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

An efficient selection strategy for digital circuit evolution

Published: 06 September 2010 Publication History

Abstract

In this paper, we propose a new modification of Cartesian Genetic Programming (CGP) that enables to optimize digital circuits more significantly than standard CGP. We argue that considering fully functional but not necessarily smallest-discovered individual as the parent for new population can decrease the number of harmful mutations and so improve the search space exploration. This phenomenon was confirmed on common benchmarks such as combinational multipliers and the LGSynth91 circuits.

References

[1]
Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital Circuits - Part I. Genetic Programming and Evolvable Machines 1(1), 8-35 (2000).
[2]
Vassilev, V., Job, D., Miller, J.: Towards the Automatic Design of More Efficient Digital Circuits. In: Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, pp. 151-160. IEEE Computer Society, Los Alamitos (2000).
[3]
Kalganova, T., Miller, J.F.: Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness. In: The First NASA/DoD Workshop on Evolvable Hardware, pp. 54-63. IEEE Computer Society, Los Alamitos (1999).
[4]
Gajda, Z., Sekanina, L.: Reducing the number of transistors in digital circuits using gate-level evolutionary design. In: 2007 Genetic and Evolutionary Computation Conference, pp. 245-252. ACM, New York (2007).
[5]
Gajda, Z., Sekanina, L.: When does cartesian genetic programming minimize the phenotype size implicitly? In: Genetic and Evolutionary Computation Conference. ACM, New York (2010) (accepted).
[6]
Vassilev, V.K., Miller, J.F.: The advantages of landscape neutrality in digital circuit evolution. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 252-263. Springer, Heidelberg (2000).
[7]
Miller, J.F., Smith, S.L.: Redundancy and Computational Efficiency in Cartesian Genetic Programming. IEEE Transactions on Evolutionary Computation 10(2), 167-174 (2006).
[8]
Miller, J.F., Job, D., Vassilev, V.K.: Principles in the Evolutionary Design of Digital Circuits - Part II. Genetic Programming and Evolvable Machines 1(3), 259-288 (2000).
[9]
Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121-132. Springer, Heidelberg (2000).
[10]
Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204-217. Springer, Heidelberg (2001).
[11]
Collins, M.: Finding needles in haystacks is harder with neutrality. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1613-1618. ACM, New York (2005).
[12]
Miller, J.: What bloat? cartesian genetic programming on boolean problems. In: 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 295-302 (2001).
[13]
Yang, S.: Logic Synthesis and Optimization Bechmarks User Guide, Version 3.0 (1991).
[14]
Berkley Logic Synthesis and Verification Group (ABC: A System for Sequential Synthesis and verification).
[15]
Weste, N., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 3rd edn. Addison-Wesley, Reading (2004).

Cited By

View all
  • (2019)Recent Developments in Cartesian Genetic Programming and its VariantsACM Computing Surveys10.1145/327551851:6(1-29)Online publication date: 28-Jan-2019
  • (2011)Evolving cell array configurations using CGPProceedings of the 14th European conference on Genetic programming10.5555/2008307.2008315(73-84)Online publication date: 27-Apr-2011
  • (2011)Evolution of digital circuitsProceedings of the 13th annual conference companion on Genetic and evolutionary computation10.1145/2001858.2002140(1343-1360)Online publication date: 12-Jul-2011
  1. An efficient selection strategy for digital circuit evolution

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    ICES'10: Proceedings of the 9th international conference on Evolvable systems: from biology to hardware
    September 2010
    394 pages
    ISBN:3642153224
    • Editors:
    • Gianluca Tempesti,
    • Andy M. Tyrrell,
    • Julian F. Miller

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 06 September 2010

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Recent Developments in Cartesian Genetic Programming and its VariantsACM Computing Surveys10.1145/327551851:6(1-29)Online publication date: 28-Jan-2019
    • (2011)Evolving cell array configurations using CGPProceedings of the 14th European conference on Genetic programming10.5555/2008307.2008315(73-84)Online publication date: 27-Apr-2011
    • (2011)Evolution of digital circuitsProceedings of the 13th annual conference companion on Genetic and evolutionary computation10.1145/2001858.2002140(1343-1360)Online publication date: 12-Jul-2011

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media