Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1885031.1885051guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Drift analysis with tail bounds

Published: 11 September 2010 Publication History

Abstract

We give a simple and short alternative proof of the multiplicative drift theorem published recently (Doerr, Johannsen, Winzen (GECCO 2010)). It completely avoids the use of drift theorems previously used in the theory of evolutionary computation. By this, its proof is fully self-contained.
The new theorem yields exactly the same bounds for expected runtimes as the previous theorem. In addition, it also gives good bounds on the deviations from the mean. This shows, for the first time, that the classical O(n log n) run-time bound for the (1+1) evolutionary algorithm for optimizing linear functions holds with high probability (and not just in expectation). Similar improvements are obtained for other classical problems in the evolutionary algorithms literature, for example computing minimum spanning trees, finding single-source shortest paths, and finding Eulerian cycles.

References

[1]
Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.: Computing single source shortest paths using single-objective fitness. In: Proceedings of FOGA 2009, pp. 59-66. ACM, New York (2009)
[2]
Doerr, B., Hebbinghaus, N., Neumann, F.: Speeding up evolutionary algorithms through restricted mutation operators. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 978-987. Springer, Heidelberg (2006)
[3]
Doerr, B., Goldberg, L.A.: Adaptive drift analysis. In: Proceedings of PPSN XI. Springer, Heidelberg (to appear, 2010)
[4]
Doerr, B., Happ, E., Klein, C.: A tight bound for the (1+1)-EA on the single-source shortest path problem. In: Proceedings of CEC 2007, pp. 1890-1895. IEEE, Los Alamitos (2007)
[5]
Doerr, B., Johannsen, D.: Adjacency list matchings -- an ideal genotype for cycle covers. In: Proceedings of GECCO 2007, pp. 1203-1210. ACM, New York (2007)
[6]
Doerr, B., Johannsen, D.: Edge-based representation beats vertex-based representation in shortest path problems. In: Proceedings of GECCO 2010. ACM, New York (to appear, 2010)
[7]
Doerr, B., Johannsen, D., Winzen, C.: Drift analysis and linear functions revisited. In: Proceedings of CEC 2010. IEEE, Los Alamitos (to appear, 2010)
[8]
Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. In: Proceedings of GECCO 2010. ACM, New York (to appear, 2010)
[9]
Doerr, B., Klein, C., Storch, T.: Faster evolutionary algorithms by superior graph representation. In: Proceedings of FOCI 2007, pp. 245-250. IEEE, Los Alamitos (2007)
[10]
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51-81 (2002)
[11]
Dyer, M., Greenhill, C.: Random walks on combinatorial objects. In: Surveys in Combinatorics 1999, pp. 101-136. University Press (1999)
[12]
Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8, 128-140 (1741)
[13]
Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415-426. Springer, Heidelberg (2003)
[14]
Giel, O., Lehre, P.K.: On the effect of populations in evolutionary multi-objective optimization. In: Proceedings of GECCO 2006, pp. 651-658. ACM, New York (2006)
[15]
Grimmett, G.R., Stirzaker, D.R.: Probability and random processes, 2nd edn. The Clarendon Press Oxford University Press, New York (1992)
[16]
Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 13, 502-525 (1982)
[17]
Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitnessproportional selection for optimizing linear functions. In: Proceedings of GECCO 2008, pp. 953-960. ACM, New York (2008)
[18]
He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artificial Intelligence 127, 57-85 (2001)
[19]
He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3, 21-35 (2004)
[20]
Hierholzer, C.: Über die Möglichkeit, einen Linenzug ohne Wiederholung und ohne Unterbrechung zu umfahren. Mathematische Annalen 6, 30-32 (1873)
[21]
Neumann, F.: Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. In: Proceedings of CEC 2004, pp. 904-910. IEEE, Los Alamitos (2004)
[22]
Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proceedings of GECCO 2009, pp. 835-842. ACM, New York (2009)
[23]
Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theoretical Compututer Science 378, 32-40 (2007)
[24]
Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82-91. Springer, Heidelberg (2008)
[25]
Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. In: Proceedings of GECCO 2007, pp. 947-954. ACM, New York (2007)
[26]
Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms 4, 349-366 (2004)

Cited By

View all
  • (2021)Runtime analysis of population-based evolutionary algorithmsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3449726.3461423(856-880)Online publication date: 7-Jul-2021
  • (2020)Runtime analysis of population-based evolutionary algorithmsProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3389890(458-494)Online publication date: 8-Jul-2020
  • (2019)Runtime analysis of evolutionary algorithms: basic introductionProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3319619.3323394(662-693)Online publication date: 13-Jul-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
PPSN'10: Proceedings of the 11th international conference on Parallel problem solving from nature: Part I
September 2010
741 pages
ISBN:3642158439
  • Editors:
  • Robert Schaefer,
  • Carlos Cotta,
  • Joanna Kołodziej,
  • Günter Rudolph

Sponsors

  • Hewlett-Packard Polska
  • Microsoft: Microsoft
  • Intel: Intel

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 11 September 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Runtime analysis of population-based evolutionary algorithmsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3449726.3461423(856-880)Online publication date: 7-Jul-2021
  • (2020)Runtime analysis of population-based evolutionary algorithmsProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3389890(458-494)Online publication date: 8-Jul-2020
  • (2019)Runtime analysis of evolutionary algorithms: basic introductionProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3319619.3323394(662-693)Online publication date: 13-Jul-2019
  • (2018)On the runtime dynamics of the compact genetic algorithm on jump functionsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205608(967-974)Online publication date: 2-Jul-2018
  • (2018)Runtime analysis of probabilistic crowding and restricted tournament selection for bimodal optimisationProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205591(929-936)Online publication date: 2-Jul-2018
  • (2018)Optimal Static and Self-Adjusting Parameter Choices for the $$(1+(\lambda ,\lambda ))$$(1+(ź,ź)) Genetic AlgorithmAlgorithmica10.1007/s00453-017-0354-980:5(1658-1709)Online publication date: 1-May-2018
  • (2017)Theoretical results on bet-and-run as an initialisation strategyProceedings of the Genetic and Evolutionary Computation Conference10.1145/3071178.3071329(857-864)Online publication date: 1-Jul-2017
  • (2015)Optimizing linear functions with the ( 1 + λ ) evolutionary algorithm-Different asymptotic runtimes for different instancesTheoretical Computer Science10.1016/j.tcs.2014.03.015561:PA(3-23)Online publication date: 4-Jan-2015
  • (2015)On the Diameter of Hyperbolic Random GraphsProceedings, Part II, of the 42nd International Colloquium on Automata, Languages, and Programming - Volume 913510.1007/978-3-662-47666-6_49(614-625)Online publication date: 6-Jul-2015
  • (2013)How the (1+λ) evolutionary algorithm optimizes linear functionsProceedings of the 15th annual conference on Genetic and evolutionary computation10.1145/2463372.2463569(1589-1596)Online publication date: 6-Jul-2013
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media