Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1885577.1885618guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

The prize-collecting edge dominating set problem in trees

Published: 23 August 2010 Publication History

Abstract

In this paper, we consider the prize-collecting edge dominating set problem, which is a generalization of the edge dominating set problem. In the prize-collecting edge dominating set problem, we are not forced to dominate all edges, but we need to pay penalties for edges which are not dominated. It is known that this problem is NP-hard, and Parekh presented a 8/3-approximation algorithm. To the best of our knowledge, no polynomial-time solvable case is known for this problem. In this paper, we show that the prize-collecting edge dominating set problem in trees can be solved in polynomial time.

References

[1]
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal on Applied Mathematics 38(3), 364-372 (1980).
[2]
Gotthilf, Z., Lewenstein, M., Rainshmidt, E.: A (2 - c log n/n) approximation algorithm for the minimum maximal matching problem. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 267-278. Springer, Heidelberg (2009).
[3]
Mitchell, S., Hedetniemi, S.: Edge domination in trees. In: Proceedings of the Eighth Southern Conference on Combinatorics, Graph Theory, and Computing, pp. 489-509 (1977).
[4]
Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics 118(3), 199-207 (2002).
[5]
Parekh, O.: Edge dominating and hypomatchable sets. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 287-291 (2002).
[6]
Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Algorithmica 50(2), 244-254 (2008).
[7]
Archer, A., Bateni, M., Hajiaghayi, M.T., Karloff, H.J.: Improved approximation algorithms for prize-collecting steiner tree and TSP. In: Proceedings of the Fiftieth Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pp. 427-436 (2009).
[8]
Hochbaum, D.S.: Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations. European Journal of Operational Research 140(2), 291-321 (2002).
[9]
Parekh, O.: Approximation algorithms for partially covering with edges. Theoretical Computer Science 400(1-3), 159-168 (2008).
[10]
Schrijver, A.: Theory of Linear and Integer Programming. J. Wiley & Sons, Chichester (1986).
[11]
Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Annals of Discrete Mathematics 1, 185-204 (1977).
[12]
Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 223-246. Princeton University Press, Princeton (1956).
[13]
Ghouila-Houri, A.: Caractérisation des matrices totalement unimodulaires. Comptes Redus Hebdomadaires des Séances de l'Académie des Sciences (Paris) 254, 1192-1194 (1962).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
MFCS'10: Proceedings of the 35th international conference on Mathematical foundations of computer science
August 2010
714 pages
ISBN:364215154X
  • Editors:
  • Petr Hliněný,
  • Antonín Kučera

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 August 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media