Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1880918.1880980guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Testing non-uniform k-wise independent distributions over product spaces

Published: 06 July 2010 Publication History

Abstract

A distribution D over Σ1 × ... × Σn is called (non-uniform) k-wise independent if for any set of k indices {i1,..., ik} and for any z1...zk ∈ Σi1×...×Σik, PrX-D[Xi1...Xik = z1 ... zk] = PrX-D[Xi1 = z1] ... PrX-D[Xik = zk]. We study the problem of testing (non-uniform) k-wise independent distributions over product spaces. For the uniform case we show an upper bound on the distance between a distribution D from the set of k-wise independent distributions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. Such a bound was previously known only for the binary field. For the non-uniform case, we give a new characterization of distributions being k-wise independent and further show that such a characterization is robust. These greatly generalize the results of Alon et al. [1] on uniform k-wise independence over the binary field to non-uniform k-wise independence over product spaces. Our results yield natural testing algorithms for k-wise independence with time and sample complexity sublinear in terms of the support size when k is a constant. The main technical tools employed include discrete Fourier transforms and the theory of linear systems of congruences.

References

[1]
Alon, N., Andoni, A., Kaufman, T., Matulef, K., Rubinfeld, R., Xie, N.: Testing k-wise and almost k-wise independence. In: Proc. 39th Annual ACM Symposium on the Theory of Computing, pp. 496-505 (2007).
[2]
Alon, N., Babai, L., Itai, A.: A fast and simple randomized algorithm for the maximal independent set problem. Journal of Algorithms 7, 567-583 (1986).
[3]
Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures and Algorithms 3(3), 289-304 (1992); Earlier version in FOCS 1990.
[4]
Alon, N., Goldreich, O., Mansour, Y.: Almost k-wise independence versus k-wise independence. Information Processing Letters 88, 107-110 (2003).
[5]
Austrin, P.: Conditional inapproximability and limited independence. PhD thesis, KTH - Royal Institute of Technology (2008), http://www.csc.kth.se/~austrin/ papers/thesis.pdf.
[6]
Azar, Y., Naor, J., Motwani, R.: Approximating probability distributions using small sample spaces. Combinatorica 18(2), 151-171 (1998).
[7]
Batu, T., Fischer, E., Fortnow, L., Kumar, R., Rubinfeld, R., White, P.: Testing random variables for independence and identity. In: Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science, pp. 442-451 (2001).
[8]
Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., White, P.: Testing that distributions are close. In: Proc. 41st Annual IEEE Symposium on Foundations of Computer Science, pp. 189-197 (2000).
[9]
Batu, T., Kumar, R., Rubinfeld, R.: Sublinear algorithms for testing monotone and unimodal distributions. In: Proc. 36th Annual ACM Symposium on the Theory of Computing, pp. 381-390. ACM Press, New York (2004).
[10]
Bertram-Kretzberg, C., Lefmann, H.: MODp-tests, almost independence and small probability spaces. Random Structures and Algorithms 16(4), 293-313 (2000).
[11]
Blais, E.: Testing juntas nearly optimally. In: Proc. 41st Annual ACM Symposium on the Theory of Computing, pp. 151-158 (2009).
[12]
Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. Journal of Computer and System Sciences 47, 549-595 (1993); Earlier version in STOC 1900.
[13]
Chor, B., Goldreich, O.: On the power of two-point based sampling. Journal of Complexity 5(1), 96-106 (1989).
[14]
Czumaj, A., Sohler, C.: Sublinear-time algorithms. Bulletin of the European Association for Theoretical Computer Science 89, 23-47 (2006).
[15]
Diakonikolas, I., Lee, H., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R., Wan, A.: Testing for concise representations. In: Proc. 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 549-558 (2007).
[16]
Efremenko, K.: 3-query locally decodable codes of subexponential length. In: Proc. 41st Annual ACM Symposium on the Theory of Computing, pp. 39-44 (2009).
[17]
Even, G., Goldreich, O., Luby, M., Nisan, N., Velickovic, B.: Efficient approximation of product distributions. Random Structures and Algorithms 13(1), 1-16 (1998); Earlier version in STOC 1992.
[18]
Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for Theoretical Computer Science 75 (2001).
[19]
Goldreich, O., Goldwaser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM 45, 653-750 (1998).
[20]
Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Technical Report TR00-020, Electronic Colloquium on Computational Complexity (2000).
[21]
Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica 20(1), 71-86 (2000).
[22]
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1980).
[23]
Joffe, A.: On a set of almost deterministic k-independent random variables. Annals of Probability 2, 161-162 (1974).
[24]
Karloff, H., Mansour, Y.: On construction of k-wise independent random variables. In: Proc. 26th Annual ACM Symposium on the Theory of Computing, pp. 564-573 (1994).
[25]
Karp, R., Wigderson, A.: A fast parallel algorithm for the maximal independent set problem. Journal of the ACM 32(4), 762-773 (1985).
[26]
Koller, D., Megiddo, N.: Constructing small sample spaces satisfying given constraints. In: Proc. 25th Annual ACM Symposium on the Theory of Computing, pp. 268-277 (1993).
[27]
Kumar, R., Rubinfeld, R.: Sublinear time algorithms. SIGACT News 34, 57-67 (2003).
[28]
Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing 15(4), 1036-1053 (1986); Earlier version in STOC 1985.
[29]
Luby, M.: Removing randomness in parallel computation without a processor penalty. In: Proc. 29th Annual IEEE Symposium on Foundations of Computer Science, pp. 162-173 (1988).
[30]
Mossel, E.: Gaussian bounds for noise correlation of functions and tight analysis of long codes. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 156-165 (2008).
[31]
Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM Journal on Computing 22(4), 838-856 (1993); Earlier version in STOC 1990.
[32]
Neuman, C.P., Schonbach, D.I.: Discrete (Legendre) orthogonal polynomials -Asurvey. International Journal for Numerical Methods in Engineering 8, 743-770 (1974).
[33]
Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Heidelberg (1991).
[34]
Raskhodnikova, S., Ron, D., Shpilka, A., Smith, A.: Strong lower bounds for approximating distribution support size and the distinct elements problem. In: Proc. 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 559-569 (2007).
[35]
Ron, D.: Property testing (a tutorial). In: Pardalos, P.M., Rajasekaran, S., Reif, J., Rolim, J.D.P. (eds.) Handbook of Randomized Computing, pp. 597-649. Kluwer Academic Publishers, Dordrecht (2001).
[36]
Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing 25, 252-271 (1996).
[37]
Silvester, J.R.: Determinants of block matrices. Maths Gazette 84, 460-467 (2000).
[38]
Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Phil. Trans. Royal Soc. London A 151, 293-326 (1861).
[39]
Štefankovič, D.: Fourier transform in computer science. Master's thesis, University of Chicago (2000).
[40]
Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge University Press, Cambridge (1999).
[41]
Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length. Journal of the ACM 55(1), 1-16 (2008).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICALP'10: Proceedings of the 37th international colloquium conference on Automata, languages and programming
July 2010
753 pages
ISBN:3642141641

Sponsors

  • GDR Informatique Mathçmatique
  • Conseil Régional d'Aquitaine
  • Communauté Urbaine de Bordeaux
  • CEA: Commissariat à l'énergie atomique et aux énergies alternatives
  • INRIA: Institut Natl de Recherche en Info et en Automatique

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 06 July 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media