Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1813164.1813191guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A local 2-approximation algorithm for the vertex cover problem

Published: 23 September 2009 Publication History

Abstract

We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.

References

[1]
Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85-103. Plenum Press, New York (1972).
[2]
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979).
[3]
Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 - Ɛ. Journal of Computer and System Sciences 74(3), 335-349 (2008).
[4]
Grandoni, F., Könemann, J., Panconesi, A.: Distributed weighted vertex cover via maximal matchings. ACM Transactions on Algorithms 5(1), 1-12 (2008).
[5]
Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. SIAM Journal on Discrete Mathematics 15(1), 41- 57 (2001).
[6]
Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distributed Computing 14(2), 97-100 (2001).
[7]
Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193-201 (1992).
[8]
Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Computing 24(6), 1259-1277 (1995).
[9]
Suomela, J.: Survey of local algorithms (2009, manuscript), http://www.iki.fi/jukka.suomela/local-survey
[10]
Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proc. 23rd Symposium on Principles of Distributed Computing (PODC), pp. 300-309. ACM Press, New York (2004).
[11]
Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proc. 17th Symposium on Discrete Algorithms (SODA), pp. 980-989. ACM Press, New York (2006).
[12]
Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on Computing 11(3), 555-556 (1982).
[13]
Moscibroda, T.: Locality, Scheduling, and Selfishness: Algorithmic Foundations of Highly Decentralized Networks. PhD thesis, ETH Zürich (2006).
[14]
Polishchuk, V., Suomela, J.: A simple local 3-approximation algorithm for vertex cover. Information Processing Letters 109(12), 642-645 (2009).
[15]
Czygrinow, A., Hanckowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78-92. Springer, Heidelberg (2008).
[16]
Lenzen, C., Wattenhofer, R.: Leveraging Linial's locality limit. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394-407. Springer, Heidelberg (2008).
[17]
Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building self-stabilizing distributed protocols. In: Proc. 32nd Symposium on Foundations of Computer Science (FOCS), pp. 258-267. IEEE Computer Society Press, Los Alamitos (1991).
[18]
Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. Journal of Algorithms 2(2), 198-203 (1981).
[19]
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (2003).
[20]
Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001).
[21]
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, New York (1998).
[22]
Gonzalez, T.F.: A simple LP-free approximation algorithm for the minimum weight vertex cover problem. Information Processing Letters 54(3), 129-131 (1995).
[23]
Khuller, S., Vishkin, U., Young, N.: A primal-dual parallel approximation technique applied to weighted set and vertex covers. Journal of Algorithms 17(2), 280-289 (1994).
[24]
Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. In: Proc. 9th Symposium on Discrete Algorithms (SODA), pp. 219-225. SIAM, Philadelphia (1998).
[25]
Ramsey, F.P.: On a problem of formal logic. Proceedings of the London Mathematical Society 30, 264-286 (1930).
[26]
Floréen, P., Kaasinen, J., Kaski, P., Suomela, J.: An optimal local approximation algorithm for max-min linear programs. In: Proc. 21st Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM Press, New York (2009).
[27]
Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static and dynamic graphs. In: Proc. 3rd Israel Symposium on the Theory of Computing and Systems (ISTCS 1995), pp. 268-278. IEEE Computer Society Press, Los Alamitos (1995).

Cited By

View all
  • (2019)Optimal Distributed Covering AlgorithmsProceedings of the 2019 ACM Symposium on Principles of Distributed Computing10.1145/3293611.3331577(104-106)Online publication date: 16-Jul-2019
  • (2017)A Distributed (2 + ε)-Approximation for Vertex Cover in O(log Δ / ε log log Δ) RoundsJournal of the ACM10.1145/306029464:3(1-11)Online publication date: 16-Jun-2017
  • (2016)A Distributed (2+ε)-Approximation for Vertex Cover in O(logδ/ε log log δ) RoundsProceedings of the 2016 ACM Symposium on Principles of Distributed Computing10.1145/2933057.2933086(3-8)Online publication date: 25-Jul-2016
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
DISC'09: Proceedings of the 23rd international conference on Distributed computing
September 2009
532 pages
ISBN:3642043542
  • Editor:
  • Idit Keidar

In-Cooperation

  • EATCS: European Association for Theoretical Computer Science

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 23 September 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2019)Optimal Distributed Covering AlgorithmsProceedings of the 2019 ACM Symposium on Principles of Distributed Computing10.1145/3293611.3331577(104-106)Online publication date: 16-Jul-2019
  • (2017)A Distributed (2 + ε)-Approximation for Vertex Cover in O(log Δ / ε log log Δ) RoundsJournal of the ACM10.1145/306029464:3(1-11)Online publication date: 16-Jun-2017
  • (2016)A Distributed (2+ε)-Approximation for Vertex Cover in O(logδ/ε log log δ) RoundsProceedings of the 2016 ACM Symposium on Principles of Distributed Computing10.1145/2933057.2933086(3-8)Online publication date: 25-Jul-2016
  • (2014)Linear-in-delta lower bounds in the LOCAL modelProceedings of the 2014 ACM symposium on Principles of distributed computing10.1145/2611462.2611467(86-95)Online publication date: 15-Jul-2014
  • (2013)Lower bounds for local approximationJournal of the ACM10.1145/252840560:5(1-23)Online publication date: 28-Oct-2013
  • (2013)Survey of local algorithmsACM Computing Surveys10.1145/2431211.243122345:2(1-40)Online publication date: 12-Mar-2013
  • (2012)Lower bounds for local approximationProceedings of the 2012 ACM symposium on Principles of distributed computing10.1145/2332432.2332465(175-184)Online publication date: 16-Jul-2012
  • (2011)Deterministic dominating set construction in networks with bounded degreeProceedings of the 12th international conference on Distributed computing and networking10.5555/1946143.1946149(65-76)Online publication date: 2-Jan-2011
  • (2010)Approximated distributed minimum vertex cover algorithms for bounded degree graphsProceedings of the 16th annual international conference on Computing and combinatorics10.5555/1886811.1886827(100-109)Online publication date: 19-Jul-2010
  • (2010)Distributed algorithms for edge dominating setsProceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing10.1145/1835698.1835783(365-374)Online publication date: 25-Jul-2010
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media