Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1813657.1813677guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

EEG/ERP meets ACT-R: a case study for investigating human computation mechanism

Published: 22 October 2009 Publication History

Abstract

EEG (electroencephalograph) provides information about the electrical fluctuations between neurons that characterize brain activity, and measurements of brain activity at resolutions approaching real time. On the other hand, cognitive architectures such as ACT-R would explain how all the components of the mind work together to generate coherent human cognition. Thus EEG/ERP (event-related potential) and ACT-R will provide two aspects to explore the cognitive processes and their neural basis. In this paper, we present a case study by combining EEG/ERP and ACT-R for investigating human computation mechanism. In particular, we focus on two digits addition tasks with or without carry, and systematically perform a set of behavior and EEG experiments, as well as with the help of ACT-R simulation. Preliminary results show the usefulness of our approach.

References

[1]
Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An Intergrated Theory of the Mind. Psychological Review 111(4), 1036-1060 (2004).
[2]
Anderson, J.R.: How can the Human Mind Occur in the Physical Universe. Oxford University Press, Oxford (2007).
[3]
Gazzaniga, M.S. (ed.): The Cognitive Neurosciences III. The MIT Press, Cambridge (2004).
[4]
Handy, T.C.: Event-Related Potentials, A Methods Handbook. The MIT Press, Cambridge (2004).
[5]
Liu, J., Jin, X., Tsui, K.C.: Autonomy Oriented Computing: From Problem Solving to Complex Systems Modeling. Springer, Heidelberg (2005).
[6]
Megalooikonomou, V., Herskovits, E.H.: Mining Structure-Function Associations in a Brain Image Database. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 153-179. Physica-Verlag (2001).
[7]
Mizuhara, H., Wang, L., Kobayashi, K., Yamaguchi, Y.: Long-range EEG Phasesynchronization During an Arithmetic Task Indexes a Coherent Cortical Network Simultaneously Measured by fMRI. NeuroImage 27(3), 553-563 (2005).
[8]
Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to Decode Cognitive States from Brain Images. Machine Learning 57(1-2), 145-175 (2004).
[9]
Motomura, S., Hara, A., Zhong, N., Lu, S.: An Investigation of Human Problem Solving System: Computation as an Example. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 824- 834. Springer, Heidelberg (2007).
[10]
Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972).
[11]
Qin, Y., et al.: Predicting the Practice Effects on the Blood Oxygenation Leveldependent (BOLD) Function of fMRI in a Symbolic Manipulation Task. PNAS 100, 4951-4956 (2003).
[12]
Qin, Y., Bothell, D., Anderson, J.R.: ACT-R meets fMRI. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) Web Intelligence Meets Brain Informatics. LNCS (LNAI), vol. 4845, pp. 205-222. Springer, Heidelberg (2007).
[13]
Sohn, M.-H., Douglass, S.A., Chen, M.-C., Anderson, J.R.: Characteristics of Fluent Skills in a Complex, Dynamic Problem-solving Task. Human Factors 47(4), 742-752 (2005).
[14]
Sommer, F.T., Wichert, A. (eds.): Exploratory Analysis and Data Modeling in Functional Neuroimaging. The MIT Press, Cambridge (2003).
[15]
Sternberg, R.J., Lautrey, J., Lubart, T.I.: Models of Intelligence. American Psychological Association (2003).
[16]
Ward, L.M.: Synchronous Neural Oscillations and Cognitive Processes. TRENDS in Cognitive Sciences 7(12), 553-559 (2003).
[17]
Zadeh, L.A.: Precisiated Natural Language (PNL). AI Magazine 25(3), 74-91 (Fall 2004).
[18]
Zhong, N., Wu, J.L., Nakamaru, A., Ohshima, M., Mizuhara, H.: Peculiarity Oriented fMRI Brain Data Analysis for Studying Human Multi-Perception Mechanism. Cognitive Systems Research 5(3), 241-256 (2004).
[19]
Zhong, N.: Impending Brain Informatics Research from Web Intelligence Perspective. International Journal of Information Technology and Decision Making 5(4), 713-727 (2006).
[20]
Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.): Web Intelligence Meets Brain Informatics. LNCS (LNAI), vol. 4845, pp. 1-31. Springer, Heidelberg (2007).
[21]
Zhong, N., Motomura, S.: Agent-Enriched Data Mining: A Case Study in Brain Informatics. IEEE Intelliegnt Systems 24(3), 38-45 (2009).

Cited By

View all
  • (2014)Object Segmentation in Images using EEG SignalsProceedings of the 22nd ACM international conference on Multimedia10.1145/2647868.2654896(417-426)Online publication date: 3-Nov-2014

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
BI'09: Proceedings of the 2009 international conference on Brain informatics
October 2009
236 pages
ISBN:3642049532
  • Editors:
  • Ning Zhong,
  • Kuncheng Li,
  • Shengfu Lu,
  • Lin Chen

Sponsors

  • NSF of China: National Natural Science Foundation of China
  • Beijing Municipal Lab of Brain Informatics
  • State Administration of Foreign Experts Affairs
  • Beijing University of Technology
  • Chinese Society of Radiology

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 October 2009

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2014)Object Segmentation in Images using EEG SignalsProceedings of the 22nd ACM international conference on Multimedia10.1145/2647868.2654896(417-426)Online publication date: 3-Nov-2014

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media