Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1793671.1793675guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Automatic design of vision-based obstacle avoidance controllers using genetic programming

Published: 29 October 2007 Publication History

Abstract

The work presented in this paper is part of the developmentof a robotic system able to learn context dependent visual clues to navigatein its environment. We focus on the obstacle avoidance problem asit is a necessary function for a mobile robot. As a first step, we use an offlineprocedure to automatically design algorithms adapted to the visualcontext. This procedure is based on genetic programming and the candidatealgorithms are evaluated in a simulation environment. The evolutionaryprocess selects meaningful visual primitives in the given contextand an adapted strategy to use them. The results show the emergenceof several different behaviors outperforming hand-designed controllers.

References

[1]
Santos-Victor, J., Sandini, G., Curotto, F., Garibaldi, S.: Divergent stereo for robotnavigation: learning from bees. In: IEEE Computer Society Conference on ComputerVision and Pattern Recognition, pp. 434-439 (1993).
[2]
Ebner, M., Zell, A.: Centering behavior with a mobile robot using monocularfoveated vision. Robotics and Autonomous Systems 32(4), 207-218 (2000).
[3]
Muratet, L., Doncieux, S., Brière, Y., Meyer, J.A.: A contribution to vision-based autonomous helicopter flight in urban environments. Robotics and AutonomousSystems 50(4), 195-209 (2005).
[4]
Hrabar, S.: Vision-Based 3D Navigation for an Autonomous Helicopter. PhD thesis,University of Southern California (2006).
[5]
Michels, J., Saxena, A., Ng, A.: High speed obstacle avoidance using monocularvision and reinforcement learning. In: Proceedings of the 22nd international conferenceon Machine learning, pp. 593-600 (2005).
[6]
Horswill, I.: Polly: A vision-based artificial agent. In: Proceedings of the EleventhNational Conference on Artificial Intelligence (AAAI-1993), pp. 824-829 (1993).
[7]
Lorigo, L., Brooks, R., Grimson, W.: Visually-guided obstacle avoidance in unstructuredenvironments. In: Proceedings of the 1997 IEEE/RSJ International Conferenceon Intelligent Robots and Systems, vol. 1, pp. 373-379 (1997).
[8]
Ulrich, I., Nourbakhsh, I.: Appearance-based obstacle detection with monocularcolor vision. In: Proceedings of AAAI Conference, pp. 866-871 (2000).
[9]
Harvey, I., Husbands, P., Cliff, D.: Seeing the Light: Artificial Evolution, RealVision. In: From Animals to Animats 3: Proceedings of the Third InternationalConference on Simulation of Adaptive Behavior, pp. 392-401 (1994).
[10]
Marocco, D., Floreano, D.: Active vision and feature selection in evolutionary behavioralsystems. From Animals to Animats 7, 247-255 (2002).
[11]
Mataric, M., Cliff, D.: Challenges in evolving controllers for physical robots.Robotics and Autonomous Systems 19(1), 67-83 (1996).
[12]
Walker, J., Garrett, S., Wilson, M.: Evolving controllers for real robots: A surveyof the literature. Adaptive Behavior 11(3), 179-203 (2003).
[13]
Ebner, M., Zell, A.: Evolving a task specific image operator. In: Evolutionary imageanalysis, signal processing and telecommunications: First european workshop,evoiasp, pp. 74-89 (1999).
[14]
Trujillo, L., Olague, G.: Synthesis of interest point detectors through genetic programming.In: Proceedings of the 8th annual conference on Genetic and evolutionarycomputation, pp. 887-894 (2006).
[15]
Ebner, M., Zell, A.: Evolving a behavior-based control architecture-From simulationsto the real world. In: Proceedings of Genetic and Evolutionary ComputationConference, vol. 2, pp. 1009-1014 (1999).
[16]
Pauplin, O., Louchet, J., Lutton, E., De La Fortelle, A.: Evolutionary Optimisationfor Obstacle Detection and Avoidance in Mobile Robotics. Journal of AdvancedComputational Intelligence and Intelligent Informatics 9(6), 622-629 (2005).
[17]
Olague, G., Puente, C.: Parisian evolution with honeybees for three-dimensional reconstruction. In: Proceedings of the 8th annual conference on Genetic and evolutionarycomputation, pp. 191-198 (2006).
[18]
Martin, M.: Evolving visual sonar: Depth from monocular images. Pattern RecognitionLetters 27(11), 1174-1180 (2006).
[19]
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. InternationalJournal of Computer Vision 12(1), 43-77 (1994).
[20]
Koza, J.: Genetic Programming: On the Programming of Computers by NaturalSelection. MIT Press, Cambridge, MA, USA (1992).
[21]
Montana, D.: Strongly Typed Genetic Programming. Evolutionary Computation3(2), 199-230 (1995).
[22]
Whigham, P.: Grammatically-based genetic programming. In: Proceedings of theWorkshop on Genetic Programming: From Theory to Real-World Applications, pp.33-41 (1995).
[23]
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjectivegenetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation6(2), 182-197 (2002).

Cited By

View all
  • (2008)Evolving Vision Controllers with a Two-Phase Genetic Programming System Using ImitationProceedings of the 10th international conference on Simulation of Adaptive Behavior: From Animals to Animats10.1007/978-3-540-69134-1_8(73-82)Online publication date: 7-Jul-2008
  1. Automatic design of vision-based obstacle avoidance controllers using genetic programming

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    EA'07: Proceedings of the Evolution artificielle, 8th international conference on Artificial evolution
    October 2007
    329 pages
    ISBN:3540793046
    • Editors:
    • Nicolas Monmarché,
    • El-Ghazali Talbi,
    • Pierre Collet,
    • Marc Schoenauer,
    • Evelyne Lutton

    Sponsors

    • Université François Rabelais de Tours
    • Conseil Régional du Centre
    • Ville de Tours
    • INRIA: Institut Natl de Recherche en Info et en Automatique
    • Université de Tours

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 29 October 2007

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2008)Evolving Vision Controllers with a Two-Phase Genetic Programming System Using ImitationProceedings of the 10th international conference on Simulation of Adaptive Behavior: From Animals to Animats10.1007/978-3-540-69134-1_8(73-82)Online publication date: 7-Jul-2008

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media