Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1792694.1792713guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A linear estimation-of-distribution GP system

Published: 26 March 2008 Publication History

Abstract

We present N-gram GP, an estimation of distribution algorithm for the evolution of linear computer programs. The algorithm learns and samples a joint probability distribution of triplets of instructions (or 3-grams) at the same time as it is learning and sampling a program length distribution. We have tested N-gram GP on symbolic regressions problems where the target function is a polynomial of up to degree 12 and lawn-mower problems with lawn sizes of up to 12×12. Results show that the algorithm is effective and scales better on these problems than either linear GP or simple stochastic hill-climbing.

References

[1]
Abbass, H., Hoai, N., McKay, R.: AntTAG: A new method to compose computer programs using colonies of ants. In: IEEE Congress on Evolutionary Computation (2002).
[2]
Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Prieditis, A., Russell, S. (eds.) Machine Learning: Proceedings of the Twelfth International Conference, pp. 38-46. Morgan Kaufmann Publishers, San Francisco (1995).
[3]
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994).
[4]
Larrañnaga, P., Lozano, J.A.: Estimation of Distribution Algorithms, A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002).
[5]
Manning, C., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999).
[6]
Mühlenbein, H., Mahnig, T.: Convergence theory and application of the factorized distribution algorithm. Journal of Computing and Information Technology 7(1), 19-32 (1999).
[7]
Nordin, P.: A compiling genetic programming system that directly manipulates the machine code. In: Kinnear Jr, K.E. (ed.) K, ch. 14, pp. 311-331. MIT Press, Cambridge (1994).
[8]
Poli, R., McPhee, N.F.: A linear estimation-of-distribution GP system. Tech. Report CES- 479, Dept. of Computing and Electronic Systems, University of Essex (January 2008).
[9]
Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257-286 (1989).
[10]
Ratle, A., Sebag, M.: Avoiding the bloat with probabilistic grammar-guided genetic programming. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 255-266. Springer, Heidelberg (2002).
[11]
Salustowicz, R.P., Schmidhuber, J.: Probabilistic incremental program evolution. Evolutionary Computation 5(2), 123-141 (1997).
[12]
Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practise, ch. 13, pp. 205-220. Kluwer, Dordrecht (2003).
[13]
Shan, Y., McKay, R.I., Abbass, H.A., Essam, D.: Program evolution with explicit learning: a new framework for program automatic synthesis. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, B., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC 2003, Canberra, December 2003, pp. 1639-1646. IEEE Press, Los Alamitos (2003).
[14]
Shan, Y., McKay, R.I., Essam, D., Abbass, H.A.: A survey of probabilistic model building genetic programming. In: Pelikan, M., Sastry, K., Cantu-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, Springer, Heidelberg (2006).
[15]
Suen, C.Y.: n-gram statistics for natural language understanding and text processing. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2), 164-172 (1979).
[16]
Yanai, K., Iba, H.: Estimation of distribution programming based on bayesian network. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K.C., McKay, B., Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation CEC 2003, pp. 1618-1625. IEEE Press, Los Alamitos (2003).
[17]
Yanai, K., Iba, H.: Program evolution by integrating EDP and GP. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 774-785. Springer, Heidelberg (2004).

Cited By

View all
  • (2020)DAE-GPProceedings of the 2020 Genetic and Evolutionary Computation Conference10.1145/3377930.3390180(1037-1045)Online publication date: 25-Jun-2020
  • (2018)An analysis of the bias of variation operators of estimation of distribution programmingProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205582(1191-1198)Online publication date: 2-Jul-2018
  • (2017)A probabilistic linear genetic programming with stochastic context-free grammar for solving symbolic regression problemsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3071178.3071325(1017-1024)Online publication date: 1-Jul-2017
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
EuroGP'08: Proceedings of the 11th European conference on Genetic programming
March 2008
374 pages
ISBN:3540786708

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 March 2008

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2020)DAE-GPProceedings of the 2020 Genetic and Evolutionary Computation Conference10.1145/3377930.3390180(1037-1045)Online publication date: 25-Jun-2020
  • (2018)An analysis of the bias of variation operators of estimation of distribution programmingProceedings of the Genetic and Evolutionary Computation Conference10.1145/3205455.3205582(1191-1198)Online publication date: 2-Jul-2018
  • (2017)A probabilistic linear genetic programming with stochastic context-free grammar for solving symbolic regression problemsProceedings of the Genetic and Evolutionary Computation Conference10.1145/3071178.3071325(1017-1024)Online publication date: 1-Jul-2017
  • (2014)Grammar-based genetic programming with dependence learning and bayesian network classifierProceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation10.1145/2576768.2598256(959-966)Online publication date: 12-Jul-2014
  • (2012)An investigation of local patterns for estimation of distribution genetic programmingProceedings of the 14th annual conference on Genetic and evolutionary computation10.1145/2330163.2330270(767-774)Online publication date: 7-Jul-2012
  • (2011)Applications of model reuse when using estimation of distribution algorithms to test concurrent softwareProceedings of the Third international conference on Search based software engineering10.5555/2042243.2042260(97-111)Online publication date: 10-Sep-2011
  • (2011)Finding short counterexamples in promela models using estimation of distribution algorithmsProceedings of the 13th annual conference on Genetic and evolutionary computation10.1145/2001576.2001834(1923-1930)Online publication date: 12-Jul-2011
  • (2010)Probabilistic developmental program evolutionProceedings of the 2010 ACM Symposium on Applied Computing10.1145/1774088.1774328(1138-1142)Online publication date: 22-Mar-2010
  • (2009)Developmental plasticity in linear genetic programmingProceedings of the 11th Annual conference on Genetic and evolutionary computation10.1145/1569901.1570039(1019-1026)Online publication date: 8-Jul-2009
  • (2009)Latent variable model for estimation of distribution algorithm based on a probabilistic context-free grammarIEEE Transactions on Evolutionary Computation10.1109/TEVC.2009.201557413:4(858-878)Online publication date: 1-Aug-2009

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media