Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1792694.1792703guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Partitioned incremental evolution of hardware using genetic programming

Published: 26 March 2008 Publication History

Abstract

In an effort to enable evolutionary computation techniques to discover solutions for large and complex hardware systems, techniques have been devised to break the initial problem down into smaller sub-tasks. In particular, a decomposition approach has been described that is based on partitioning of the circuit test vectors, but it has its limitations. In an effort to address this, we have combined the partitioning method with an incrementally evolving genetic programming approach. The result, referred to as Partitioned Incremental Evolution of HARDware (PIE-HARD), exhibits solution-finding performance that is significantly better than that of other approaches.

References

[1]
Koza, J.R., Bennett, I.F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated Synthesis of Analog Electrical Circuits by Means of Genetic Programming. IEEE Trans. Evol. Comput. 1(2), 109-128 (1997).
[2]
Thompson, A., Layzell, P., Zebulum, R.S.: Explorations in Design Space: Unconventional Electronics Design through Artificial Evolution. IEEE Trans. Evol. Comput. 3(3), 167-196 (1999).
[3]
Alpaydin, G., Balkir, S., Dundar, G.: An Evolutionary Approach to Automatic Synthesis of High-Performance Analog Integrated Circuits. IEEE Trans. Evol. Comput. 7(3), 240-252 (2003).
[4]
Miller, J.F., Job, D., Vassilev, V.K.: Principles in The Evolutionary Design of Digital Circuits-Part I. Genetic Programming and Evolvable Machines 1, 7-35 (2000).
[5]
Torresen, J.: A Scalable Approach to Evolvable Hardware. Genetic Programming and Evolvable Machines 3, 259-282 (2002).
[6]
Torresen, J.: A Divide-and-Conquer Approach to Evolvable Hardware. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, Springer, Heidelberg (1998).
[7]
Coello, C.A.C., Christiansen, A.D., Aguirre, A.H.: Use of Evolutionary Techniques to Automate the Design of Combinational Circuits. International Journal of Smart Engineering System Design 2(4), 229-314 (2000).
[8]
Coello, C.A.C., Luna, E.H., Aguirre, A.H.: Use of Particle Swarm Optimization to Design Combinational Logic Circuits. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 398-409. Springer, Heidelberg (2003).
[9]
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992).
[10]
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994).
[11]
Koza, J.R.: Simultaneous Discovery of Reusable Detectors and Subroutines Using Genetic Programming. In: Proc. 5th Int. Conf. Genetic Algorithms (ICGA-1993), pp. 295-302 (1993).
[12]
Rosca, J.P., Ballard, D.H.: Hierarchical Self-Organization in Genetic Programming. In: Proc 11th International Conf. on Machine Learning, pp. 251-258. Morgan Kaufmann, San Francisco (1994).
[13]
Angeline, P.J., Pollack, J.: Evolutionary Module Acquisition. In: Proc. 2nd Annual Conf. on Evolutionary Programming, La Jolla, CA, pp. 154-163 (1993).
[14]
Angeline, P.J., Pollack, J.: Coevolving High-Level Representations. In: Langton, C.G. (ed.) Artificial Life III, pp. 55-71. Addison-Wesley, Reading (1994).
[15]
Rosca, J.P., Ballard, D.H.: Discovery of Subroutines in Genetic Programming. In: Angeline, P., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, ch. 9, pp. 177-202. MIT Press, Cambridge (1996).
[16]
Roberts, S.C., Howard, D., Koza, J.R.: Evolving Modules in Genetic Programming by Subtree Encapsulation. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 160-175. Springer, Heidelberg (2001).
[17]
Walker, J.A., Miller, J.F.: Evolution and Acquisition of Modules in Cartesian Genetic Programming. In: Keijzer, M., O'Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 187-197. Springer, Heidelberg (2004).
[18]
Lopez, E.G., Poli, R., Coello, C.A.C.: Reusing Code in Genetic Programming. In: Keijzer, M., O'Reilly, U.-M., Lucas, S.M., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 359-368. Springer, Heidelberg (2004).
[19]
Gustafon, S.M.: Layered Learning in Genetic Programming for a Cooperative Robot Soccer Problem. M.S. Thesis, Dept. of Computing and Information Sciences, Kansas State University, USA (2000).
[20]
Hsu, W.H., Harmon, S.J., Rodriguez, E., Zhong, C.: Empirical Comparison of Incremental Reuse Strategies in Genetic Programming for Keep-Away Soccer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, Springer, Heidelberg (2004).
[21]
Jackson, D., Gibbons, A.P.: Layered Learning in Boolean GP Problems. In: Ebner, M., O'Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 148-159. Springer, Heidelberg (2007).

Index Terms

  1. Partitioned incremental evolution of hardware using genetic programming

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    EuroGP'08: Proceedings of the 11th European conference on Genetic programming
    March 2008
    374 pages
    ISBN:3540786708

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 26 March 2008

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 1
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media