Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1789715.1789737guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

An explicit construction of initial perfect quadratic forms over some families of totally real number fields

Published: 17 May 2008 Publication History

Abstract

In this paper we construct initial perfect quadratic formsover certain families of totally real number fields K. We assume that thenumber field K is either the maximal totally real subfield of a cyclotomicfield Q(ζn), where 3 χ n is the product of distinct odd primes p1, . . . , pk,or K = Q(√m1, . . . , √mk), where m1, . . . , mk are pairwise relativelyprime, square-free positive integers with all or all but one congruent to 1modulo 4. These perfect forms can be used to find all perfect quadraticforms of given rank (up to equivalence and proportion) over the field Kby applying the generalization of Voronoi's algorithm.

References

[1]
Barnes, E.S.: The complete enumeration of extreme senary forms. Phil. Trans. Roy.Soc. London 249, 461-506 (1957).
[2]
Conway, J.H., Sloane, N.: Sphere packings, lattices and groups, 3rd edn.Grundlehren der mathematischen Wissenschaften, vol. 290. Springer, Heidelberg(1999).
[3]
Coulangeon, R.: Voronoï theory over algebraic number fields. Monographies del'Enseignement Mathématique 37, 147-162 (2001).
[4]
Gruber, P., Lekkerkerker, C.: Geometry of numbers. North-Holland, Amsterdam(1987).
[5]
Kitaoka, Y.: Arithmetic of quadratic forms. Cambridge University Press, Cambridge(1993).
[6]
Leibak, A.: On additive generalization of Voronoï's theory for algebraic numberfields. Proc. Estonian Acad. Sci. Phys. Math. 54(4), 195-211 (2005).
[7]
Leibak, A.: The complete enumeration of binary perfect forms over algebraic numberfield Q(√6). Proc. of Estonian Acad. of Sci. Phys. Math. 54(4), 212-234 (2005).
[8]
Martinet, J.: Perfect lattices in euclidean spaces. Grundlehren der mathematischenWissenschaften, vol. 327. Springer, Heidelberg (2003).
[9]
Ong, H.E.: Perfect quadratic forms over real quadratic number fields. GeometriaeDedicata 20, 51-77 (1986).
[10]
Sikiric, M.D., Schürmann, A., Vallentin, F.: Classification of eight dimensionalperfect forms. Electron. Res. Announc. Amer. Math. Soc. 13, 21-32 (2007).
[11]
Voronoï, G.: Sur quelques propriétés des formes quadratiques positives parfaites.J. reine angew. Math. 133, 97-178 (1908).
[12]
Washington, L.C.: Introduction to Cyclotomic Fields, 2nd edn. Graduate Texts inMathematics, vol. 83. Springer, Berlin (1997).

Index Terms

  1. An explicit construction of initial perfect quadratic forms over some families of totally real number fields

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    ANTS-VIII'08: Proceedings of the 8th international conference on Algorithmic number theory
    May 2008
    454 pages
    ISBN:3540794557
    • Editors:
    • Alfred J. Van Der Poorten,
    • Andreas Stein

    Sponsors

    • Alberta Informatics Circle of Research Excellence (iCORE)
    • CISaC: The Centre for Information Security and Cryptography
    • The Fields Institute
    • Microsoft Research: Microsoft Research
    • PIMS: The Pacific Institute for the Mathematical Sciences

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 17 May 2008

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media