Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1759840.1759842guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Dynamical systems generated by rational functions

Published: 12 May 2003 Publication History

Abstract

We consider dynamical systems generated by iterations of rational functions over finite fields and residue class rings. We present a survey of recent developments and outline several open problem.

References

[1]
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.
[2]
G. Barat, T. Downarowicz and P. Liardet, Dynamiques associées à une échelle de numération, Acta Arith. 103, 41-78 (2002).
[3]
V. Berthé and H. Nakada, On continued fraction expansions in positive characteristic: equivalence relations and some metric properties, Expositiones Math. 18, 257-284 (2000).
[4]
L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator, SIAM J. Computing 15, 364-383 (1986).
[5]
T. Cochrane, Exponential sums modulo prime powers, Acta Arith. 101, 131-149 (2002).
[6]
T. Cochrane, C. Li and Z.Y. Zheng, Upper bounds on character sums with rational function entries, Acta Math. Sinica (English Ser.) 19, 1-11 (2003).
[7]
T. Cochrane and Z.Y. Zheng, Pure and mixed exponential sums, Acta Arith. 91, 249-278 (1999).
[8]
T. Cochrane and Z.Y. Zheng, Exponential sums with rational function entries, Acta Arith. 95, 67-95 (2000).
[9]
T. Cochrane and Z.Y. Zheng, On upper bounds of Chalk and Hua for exponential sums, Proc. Amer. Math. Soc. 129, 2505-2516 (2001).
[10]
T. Cochrane and Z.Y. Zheng, A survey on pure and mixed exponential sums modulo prime powers, Number Theory for the Millennium (M.A. Bennett et al., eds.), vol. 1, pp. 271-300, A.K. Peters, Natick, MA, 2002.
[11]
S.D. Cohen, H. Niederreiter, I.E. Shparlinski and M. Zieve, Incomplete character sums and a special class of permutations, J. Théorie des Nombres Bordeaux 13, 53-63 (2001).
[12]
R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer-Verlag, New York, 2001.
[13]
J. Eichenauer-Herrmann, E. Herrmann and S. Wegenkittl, A survey of quadratic and inversive congruential pseudorandom numbers, Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lect. Notes in Stat., vol. 127, pp. 66-97, Springer-Verlag, New York, 1998.
[14]
G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer-Verlag, London, 1999.
[15]
M. Flahive and H. Niederreiter, On inversive congruential generators for pseudo-random numbers, Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 75-80, Marcel Dekker, New York, 1993.
[16]
P. Flajolet and A.M. Odlyzko, Random mapping statistics, Advances in Cryptology - EUROCRYPT '89 (J.-J. Quisquater and J. Vandewalle, eds.), Lect. Notes in Comp. Sci., vol. 434, pp. 329-354, Springer-Verlag, Berlin, 1990.
[17]
L. Flatto, Z-numbers and β-transformations, Symbolic Dynamics and Its Applications, Contemporary Math., vol. 135, pp. 181-201, Amer. Math. Soc., Providence, RI, 1992.
[18]
L. Flatto, J.C. Lagarias and B. Poonen, The zeta function of the beta transformation, Ergodic Theory Dynam. Systems 14, 237-266 (1994).
[19]
J.B. Friedlander, J. Hansen and I.E. Shparlinski, Character sums with exponential functions, Mathematika 47, 75-85 (2000).
[20]
J.B. Friedlander, J. Hansen, and I.E. Shparlinski, On the distribution of the power generator modulo a prime power, Proc. DIMACS Workshop on Unusual Applications of Number Theory 2000, Amer. Math. Soc., Providence, RI (to appear).
[21]
J.B. Friedlander, S.V. Konyagin and I.E. Shparlinski, Some doubly exponential sums over Zm, Acta Arith. 105, 349-370 (2002).
[22]
J.B. Friedlander, D. Lieman and I.E. Shparlinski, On the distribution of the RSA generator, Sequences and Their Applications (C. Ding, T. Helleseth and H. Niederreiter, eds.), pp. 205-212, Springer-Verlag, London, 1999.
[23]
J.B. Friedlander, C. Pomerance and I.E. Shparlinski, Period of the power generator and small values of Carmichael's function, Math. Comp. 70, 1591-1605 (2001).
[24]
J.B. Friedlander and I.E. Shparlinski, On the distribution of the power generator, Math. Comp. 70, 1575-1589 (2001).
[25]
S. Gao, Elements of provable high orders in finite fields, Proc. Amer. Math. Soc. 127, 1615-1623 (1999).
[26]
F. Griffin, H. Niederreiter and I.E. Shparlinski, On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (M. Fossorier et al., eds.), Lect. Notes in Comp. Sci., vol. 1719, pp. 87-93, Springer-Verlag, Berlin, 1999.
[27]
J. Gutierrez and D. Gomez-Perez, Iterations of multivariate polynomials and discrepancy of pseudorandom numbers, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (S. Boztas and I.E. Shparlinski, eds.), Lect. Notes in Comp. Sci., vol. 2227, pp. 192-199, Springer-Verlag, Berlin, 2001.
[28]
J. Gutierrez, H. Niederreiter and I.E. Shparlinski, On the multidimensional distribution of inversive congruential pseudorandom numbers in parts of the period, Monatsh. Math. 129, 31-36 (2000).
[29]
K. Huber, On the period length of generalized inversive pseudorandom number generators, Applicable Algebra Engrg. Comm. Comput. 5, 255-260 (1994).
[30]
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.
[31]
A. Klapper, The distribution of points in orbits of PGL.(GF(q)) acting on GF(qn), Finite Fields, Coding Theory, and Advances in Communications and Computing (G.L. Mullen and P.J.-S. Shiue, eds.), pp. 430-431, Marcel Dekker, New York, 1993.
[32]
D.E. Knuth, The Art of Computer Programming, vol. 2, 3rd ed., Addison-Wesley, Reading, MA, 1998.
[33]
J.C. Lagarias, Pseudorandom number generators in cryptography and number theory, Cryptology and Computational Number Theory (C. Pomerance, ed.), Proc. Symp. in Appl. Math., vol. 42, pp. 115-143, Amer. Math. Soc., Providence, RI, 1990.
[34]
J.C. Lagarias, Number theory and dynamical systems, The Unreasonable Effectiveness of Number Theory, Proc. Symp. in Appl. Math., vol. 46, pp. 35-72, Amer. Math. Soc., Providence, RI, 1992.
[35]
J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric tent map expansions. I. Eventually periodic points, J. London Math. Soc. 47, 542-556 (1993).
[36]
J.C. Lagarias, H.A. Porta and K.B. Stolarsky, Asymmetric tent map expansions. II. Purely periodic points, Illinois J. Math. 38, 574-588 (1994).
[37]
R. Lidl, G.L. Mullen and G. Turnwald, Dickson Polynomials, Longman, Harlow, 1993.
[38]
R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997.
[39]
C.J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc. 111, 523-531 (1991).
[40]
P. Morton, Periods of maps on irreducible polynomials over finite fields, Finite Fields Appl. 3, 11-24 (1997).
[41]
P. Morton, Arithmetic properties of periodic points of quadratic maps. II, Acta Arith. 87, 89-102 (1998).
[42]
P. Morton and J.H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2, 97-110 (1994).
[43]
P. Morton and J.H. Silverman, Periodic points, multiplicities, and dynamical units, J. Reine Angew. Math. 461, 81-122 (1995).
[44]
P. Morton and F. Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8, 571-584 (1995).
[45]
W. Narkiewicz, Polynomial Mappings, Lect. Notes in Math., vol. 1600, Springer-Verlag, Berlin, 1995.
[46]
H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, 957-1041 (1978).
[47]
H. Niederreiter, The probabilistic theory of linear complexity, Advances in Cryptology - EUROCRYPT '88 (C.G. Günther, ed.), Lect. Notes in Comp. Sci., vol. 330, pp. 191-209, Springer-Verlag, Berlin, 1988.
[48]
H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
[49]
H. Niederreiter, New developments in uniform pseudorandom number and vector generation, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lect. Notes in Stat., vol. 106, pp. 87-120, Springer-Verlag, New York, 1995.
[50]
H. Niederreiter, Design and analysis of nonlinear pseudorandom number generators, Monte Carlo Simulation (G.I. Schuëller and P.D. Spanos, eds.), pp. 3-9, A.A. Balkema Publishers, Rotterdam, 2001.
[51]
H. Niederreiter and I.E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers, Finite Fields Appl. 5, 246-253 (1999).
[52]
H. Niederreiter and I.E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods, Applicable Algebra Engrg. Comm. Comput. 10, 189-202 (2000).
[53]
H. Niederreiter and I.E. Shparlinski, Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus, Acta Arith. 92, 89-98 (2000).
[54]
H. Niederreiter and I.E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period, Math. Comp. 70, 1569-1574 (2001).
[55]
H. Niederreiter and I.E. Shparlinski, Recent advances in the theory of nonlinear pseudorandom number generators, Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell and H. Niederreiter, eds.), pp. 86-102, Springer-Verlag, Berlin, 2002.
[56]
H. Niederreiter and I.E. Shparlinski, On the average distribution of inversive pseudorandom numbers, Finite Fields Appl. 8, 491-503 (2002).
[57]
H. Niederreiter and I.E. Shparlinski, On the distribution of power residues and primitive elements in some nonlinear recurring sequences, Bull. Lond. Math. Soc. (to appear).
[58]
H. Niederreiter and A. Winterhof, Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators, Acta Arith. 93, 387-399 (2000).
[59]
H. Niederreiter and A. Winterhof, On the distribution of compound inversive congruential pseudorandom numbers, Monatsh. Math. 132, 35-48 (2001).
[60]
H. Niederreiter and A. Winterhof, On the lattice structure of pseudorandom numbers generated over arbitrary finite fields, Applicable Algebra Engrg. Comm. Comput. 12, 265-272 (2001).
[61]
H. Niederreiter and A. Winterhof, On a new class of inversive pseudorandom numbers for parallelized simulation methods, Periodica Math. Hungarica 42, 77-87 (2001).
[62]
H. Niederreiter and A. Winterhof, On the distribution of points in orbits of PGL(2, q) acting on GF(qn), preprint, 2002.
[63]
A.G. Postnikov, Ergodic Problems in the Theory of Congruences and of Diophantine Approximations, Proc. Steklov Inst. Math., vol. 82, Amer. Math. Soc., Providence, RI, 1967.
[64]
C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, CRC Press, Boca Raton, FL, 1999.
[65]
J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17, 675-694 (1997).
[66]
K. Schmidt, Dynamical Systems of Algebraic Origin, Progress in Math., vol. 128, Birkhäuser Verlag, Basel, 1995.
[67]
I.E. Shparlinski, Exponential sums in coding theory, cryptology and algorithms, Coding Theory and Cryptology (H. Niederreiter, ed.), pp. 323-383, World Scientific Publ., Singapore, 2002.
[68]
J.H. Silverman, The field of definition for dynamical systems on P., Compositio Math. 98, 269-304 (1995).
[69]
J.H. Silverman, The space of rational maps on P., Duke Math. J. 94, 41-77 (1998).
[70]
S.B. Stečkin, An estimate of a complete rational trigonometric sum (Russian), Trudy Mat. Inst. Steklov. 143, 188-207 (1977).
[71]
G.J. Wirsching, The Dynamical System Generated by the 3n + 1 Function, Lect. Notes in Math., vol. 1681, Springer-Verlag, Berlin, 1998.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAECC'03: Proceedings of the 15th international conference on Applied algebra, algebraic algorithms and error-correcting codes
May 2003
265 pages
ISBN:3540401113
  • Editors:
  • Marc Fossorier,
  • Tom Høholdt,
  • Alain Poli

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 May 2003

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2010)On pseudorandom numbers from multivariate polynomial systemsFinite Fields and Their Applications10.1016/j.ffa.2010.05.00216:5(320-328)Online publication date: 1-Sep-2010
  • (2010)Multivariate permutation polynomial systems and nonlinear pseudorandom number generatorsFinite Fields and Their Applications10.1016/j.ffa.2009.12.00316:3(144-154)Online publication date: 1-May-2010
  • (2008)On the period of the Naor--Reingold sequenceInformation Processing Letters10.1016/j.ipl.2008.05.025108:5(304-307)Online publication date: 1-Nov-2008
  • (2008)Exponential sums of nonlinear congruential pseudorandom number generators with Rédei functionsFinite Fields and Their Applications10.1016/j.ffa.2007.03.00414:2(410-416)Online publication date: 1-Apr-2008
  • (2006)Reconstructing noisy polynomial evaluation in residue ringsJournal of Algorithms10.1016/j.jalgor.2004.07.00261:2(47-59)Online publication date: 1-Nov-2006
  • (2005)Cryptanalysis of the quadratic generatorProceedings of the 6th international conference on Cryptology in India10.1007/11596219_10(118-129)Online publication date: 10-Dec-2005

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media