Nothing Special   »   [go: up one dir, main page]

skip to main content
10.5555/1756582.1756650guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Population implosion in genetic programming

Published: 12 July 2003 Publication History

Abstract

With the exception of a small body of adaptive-parameter literature, evolutionary computation has traditionally favored keeping the population size constant through the course of the run. Unfortunately, genetic programming has an aging problem: for various reasons, late in the run the technique become less effective at optimization. Given a fixed number of evaluations, allocating many of them late in the run may thus not be a good strategy. In this paper we experiment with gradually decreasing the population size throughout a genetic programming run, in order to reallocate more evaluations to early generations. Our results show that over four problem domains and three different numbers of evaluations, decreasing the population size is always as good as, and frequently better than, various fixed-sized population strategies.

References

[1]
Streeter, M.J., Keane, M.A., Koza, J.R.: Iterative refinement of computational circuits using Genetic Programming. In Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N., eds.: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, New York, Morgan Kaufmann Publishers (2002) 877-884.
[2]
Koza, J.R., Keane, M.A., Yu, J., Mydlowec, W.: Automatic synthesis of electrical circuits containing a free variable using Genetic Programming. In Whitley, D., Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G., eds.: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), Las Vegas, Nevada, USA, Morgan Kaufmann (2000) 477-484.
[3]
Koza, J.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press (1992).
[4]
Luke, S.: When short runs beat long runs. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2001, Morgan Kaufmann Publishers (2001) 74-80.
[5]
De Jong, K.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan, Ann Arbor, MI (1975).
[6]
Grefenstette, J.J.: Optimization of control parameters for Genetic Algorithms. IEEE Transactions on Systems Man and Cybernetics 16 (1986) 122-128.
[7]
Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters affecting online performance of Genetic Algorithms for function optimization. In: Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc. (1989) 51-60.
[8]
De Jong, K., Spears, W.M.: An analysis of the interacting roles of population size and crossover in Genetic Algorithms. In Schwefel, H.P., Männer, R., eds.: Parallel Problem Solving from Nature - Proceedings of 1st Workshop, PPSN 1. Volume 496., Dortmund, Germany, Springer-Verlag, Berlin, Germany (1991) 38-47.
[9]
Goldberg, D.E., Deb, K., Clark, J.H.: Genetic Algorithms, noise, and the sizing of populations. Complex Systems 6 (1992) 333-362.
[10]
Giguère, P., Goldberg, D.E.: Population sizing for optimum sampling with Genetic Algorithms: A case study of the onemax problem. In Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R., eds.: Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, Morgan Kaufmann (1998) 496-503.
[11]
Federman, F., Dorchak, S.F.: A study of classifier length and population size. In Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R., eds.: Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, Morgan Kaufmann (1998) 629-634.
[12]
Arabas, J., Michalewicz, Z., Mulawka, J.J.: GAVaPS - A Genetic Algorithm with varying population size. In: Proceedings of IEEE Conference on Evolutionary Computation. Volume 1. (1994) 73-78.
[13]
13. Balazs, M.E., Richter, D.L.: A Genetic Algorithm with dynamic population: Experimental results. In Brave, S., Wu, A.S., eds.: Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference, Orlando, Florida, USA (1999) 25-30.
[14]
Fuchs, M.: Large populations are not always the best choice in Genetic Programming. In Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings of the Genetic and Evolutionary Computation Conference. Volume 2., Orlando, Florida, USA, Morgan Kaufmann (1999) 1033- 1038.
[15]
Wagner, N., Michalewicz, Z.: Genetic Programming with efficient population control for financial time series prediction. In Goodman, E.D., ed.: 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, San Francisco, California, USA (2001) 458-462.
[16]
Luke, S. ECJ 9: A Java EC research system. http://www.cs.umd.edu/projects/plus/ec/ecj/ (2002).
[17]
Cervone, G., Michalski, R., Kaufman, K., Panait, L.: Combining Machine Learning with Evolutionary Computation: Recent results on LEM. In: Proceedings of the Fifth International Workshop on Multistrategy Learning. (2000) 41-58.

Cited By

View all
  • (2013)Visualization of genetic lineages and inheritance information in genetic programmingProceedings of the 15th annual conference companion on Genetic and evolutionary computation10.1145/2464576.2482714(1351-1358)Online publication date: 6-Jul-2013
  • (2012)Operator equalisation for bloat free genetic programming and a survey of bloat control methodsGenetic Programming and Evolvable Machines10.1007/s10710-011-9150-513:2(197-238)Online publication date: 1-Jun-2012
  • (2010)Characterizing fault tolerance in genetic programmingFuture Generation Computer Systems10.1016/j.future.2010.02.00626:6(847-856)Online publication date: 1-Jun-2010
  • Show More Cited By
  1. Population implosion in genetic programming

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    GECCO'03: Proceedings of the 2003 international conference on Genetic and evolutionary computation: PartII
    July 2003
    2520 pages
    ISBN:3540406034
    • Editor:
    • Erick Cantú-Paz

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 12 July 2003

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2013)Visualization of genetic lineages and inheritance information in genetic programmingProceedings of the 15th annual conference companion on Genetic and evolutionary computation10.1145/2464576.2482714(1351-1358)Online publication date: 6-Jul-2013
    • (2012)Operator equalisation for bloat free genetic programming and a survey of bloat control methodsGenetic Programming and Evolvable Machines10.1007/s10710-011-9150-513:2(197-238)Online publication date: 1-Jun-2012
    • (2010)Characterizing fault tolerance in genetic programmingFuture Generation Computer Systems10.1016/j.future.2010.02.00626:6(847-856)Online publication date: 1-Jun-2010
    • (2009)Dynamic limits for bloat control in genetic programming and a review of past and current bloat theoriesGenetic Programming and Evolvable Machines10.1007/s10710-008-9075-910:2(141-179)Online publication date: 1-Jun-2009
    • (2006)A divide & conquer strategy for improving efficiency and probability of success in genetic programmingProceedings of the 9th European conference on Genetic Programming10.1007/11729976_2(13-23)Online publication date: 10-Apr-2006
    • (2005)Resource-limited genetic programmingProceedings of the 7th annual conference on Genetic and evolutionary computation10.1145/1068009.1068290(1673-1680)Online publication date: 25-Jun-2005
    • (2005)Towards identifying populations that increase the likelihood of success in genetic programmingProceedings of the 7th annual conference on Genetic and evolutionary computation10.1145/1068009.1068284(1627-1634)Online publication date: 25-Jun-2005

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media