Nothing Special   »   [go: up one dir, main page]

skip to main content
article

A survey of shadowing methods for numerical solutions of ordinary differential equations

Published: 01 May 2005 Publication History

Abstract

A shadow is an exact solution to a set of equations that remains close to a numerical solution for a long time. Shadowing can thus be used as a form of backward error analysis for numerical solutions to ordinary differential equations. This survey introduces the reader to shadowing with a detailed tour of shadowing algorithms and practical results obtained over the last 15 years.

References

[1]
Anosov, D.V., Geodesic flows and closed Riemannian manifolds with negative curvature. Proc. Steklov Inst. Math. v90. 1
[2]
Ascher, U.M., Mattheij, R.M.M. and Russell, R.D., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. 1988. Prentice-Hall Series in Computational Mathematics, 1988.Prentice-Hall, Englewood Cliffs, NJ.
[3]
Beyn, W.-J., On invariant closed curves for one-step methods. Numer. Math. v51. 103-122.
[4]
Bowen, R., ω-limit sets for axiom A diffeomorphisms. J. Differential Equations. v18. 333
[5]
Braun, M., Differential Equations and Their Applications. 1983. third ed. Springer, Berlin.
[6]
Channell, P.J. and Scovel, C., Symplectic integration of Hamiltonian systems. Nonlinearity. v3. 231-259.
[7]
Chow, S.N., Lin, X.B. and Palmer, K.J., A shadowing lemma for maps in infinite dimensions. In: Daffermos, C.M., Ladas, G., Papanicolaou, G. (Eds.), Differential Equations: Proceedings of the EQUADIFF Conference, Marcel Dekker, New York. pp. 127-136.
[8]
Chow, S.-N. and Palmer, K.J., On the numerical computation of orbits of dynamical systems: The one-dimensional case. Dynamics Differential Equations. v3. 361-380.
[9]
Chow, S.-N. and Palmer, K.J., On the numerical computation of orbits of dynamical systems: The higher dimensional case. J. Complexity. v8. 398-423.
[10]
Chow, S.-N. and Van Vleck, E.S., A shadowing lemma for random diffeomorphisms. Random Comput. Dynamics. v1 i2. 197-218.
[11]
Chow, S.N. and Van Vleck, E.S., Shadowing of lattice maps. In: Kloeden, P.E., Palmer, K.J. (Eds.), Chaotic Numerics, American Mathematical Society, Providence, RI. pp. 97-113.
[12]
Chow, S.-N. and Van Vleck, E.S., A shadowing lemma approach to global error analysis for initial value ODEs. SIAM J. Sci. Comput. v15 i4. 959-976.
[13]
Chow, S.N. and Van Vleck, E.S., Shadowing of lattice maps. In: Contemporary Mathematics, vol. 172. pp. 97-113.
[14]
In: Clarke, D.A., West, M.J. (Eds.), ASP Conference Series, vol. 123. Astronom. Soc. of the Pacific.
[15]
Coomes, B.A., Shadowing orbits of ordinary differential equations on invariant submanifolds. Trans. Amer. Math. Soc. v349 i1. 203-216.
[16]
Coomes, B.A., Koçak, H. and Palmer, K.J., Periodic shadowing. In: Kloeden, P., Palmer, K. (Eds.), Contemporary Mathematics, vol. 172. American Mathematical Society, Providence, RI. pp. 115-130.
[17]
Coomes, B.A., Koçak, H. and Palmer, K.J., Shadowing orbits of ordinary differential equations. J. Comput. Appl. Math. v52. 35-43.
[18]
Coomes, B.A., Koçak, H. and Palmer, K.J., Rigorous computational shadowing of orbits of ordinary differential equations. Numer. Math. v69. 401-421.
[19]
Coomes, B.A., Koçak, H. and Palmer, K.J., A shadowing theorem for ordinary differential equations. Z. Angew. Math. Phys. v46. 85-106.
[20]
Coomes, B.A., Koçak, H. and Palmer, K.J., Long periodic shadowing. Numer. Algorithms. v14. 55-78.
[21]
Corless, R.M., Continued fractions and chaos. Amer. Math. Monthly. v99 i3. 203-215.
[22]
Corless, R.M., Defect-controlled numerical methods and shadowing for chaotic differential equations. Physica D. v60. 323-334.
[23]
Corless, R.M., Error backward. In: Contemporary Mathematics, vol. 172. pp. 31-62.
[24]
Corless, R.M., What good are numerical simulations of chaotic dynamical systems?. Comput. Math. Appl. v28 i10--12. 107-121.
[25]
Corless, R.M., Continued fractions and chaos. Amer. Math. Monthly. v99 i3. 203-215.
[26]
Corless, R.M. and Corliss, G.F., Rationale for guaranteed ODE defect control. In: Atanassova, L., Herzberger, J. (Eds.), Computer Arithmetic and Enclosure Methods, Elsevier, Amsterdam.
[27]
Dahlquist, G. and Björck, Å., Numerical Methods. 1974. Prentice-Hall Series in Automatic Computation, 1974.Prentice-Hall, Englewood Cliffs, NJ.
[28]
Dawson, S., Grebogi, C., Sauer, T. and Yorke, J.A., Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. v73 i14. 1927-1930.
[29]
W.H. Enright, W.B. Hayes, Robust defect control for continuous rk-methods with high-order interpolants, submitted for publication
[30]
Farmer, J.D. and Sidorowich, J.J., Optimal shadowing and noise reduction. Physica D. v47. 373-392.
[31]
Fryska, S.T. and Zohdy, M.A., Computer dynamics and the shadowing of chaotic orbits. Phys. Lett. A. v166. 340-346.
[32]
Golub, G.H. and Van Loan, C.F., Matrix Computations. 1991. Johns Hopkins University Press, Baltimore, MD.
[33]
Gonzalez, O., Higham, D.J. and Stuart, A.M., On the qualitative properties of modified equations. IMA J. Numer. Anal. v19. 169-190.
[34]
Góra, P. and Boyarsky, A., Why computers like Lebesgue measure. Comput. Math. Appl. v16 i4. 321-329.
[35]
Grebogi, C., Hammel, S.M., Yorke, J.A. and Sauer, T., Shadowing of physical trajectories in chaotic dynamics: Containment and refinement. Phys. Rev. Lett. v65 i13. 1527-1530.
[36]
Hadeler, K.P., Shadowing orbits and Kantorovich's theorem. Numer. Math. v73. 65-73.
[37]
Hairer, E., Nørsett, S.P. and Wanner, G., Solving Ordinary Differential Equations. 1993. second ed. Springer, Berlin.
[38]
Hammel, S.M., Yorke, J.A. and Grebogi, C., Do numerical orbits of chaotic dynamical processes represent true orbits?. J. Complexity. v3. 136-145.
[39]
Hammel, S.M., Yorke, J.A. and Grebogi, C., Numerical orbits of chaotic dynamical processes represent true orbits. Bull. Amer. Math. Soc. v19. 465-470.
[40]
W. Hayes, Efficient shadowing of high dimensional chaotic systems with the large astrophysical n-body problem as an example, Master's Thesis, Dept. of Computer Science, University of Toronto, 1995
[41]
Hayes, W., Shadowing-based reliability decay in softened n-body simulations. Astrophys. J. Lett. v587. 59-62.
[42]
Hayes, W., Shadowing high-dimensional Hamiltonian systems: the gravitational n-body problem. Phys. Rev. Lett. v90 i5.
[43]
W. Hayes, K.R. Jackson, A fast shadowing algorithm for high dimensional ODE systems, 1996, unpublished
[44]
W.B. Hayes, Rigorous Shadowing of Numerical Solutions of Ordinary Differential Equations by Containment, Ph.D. Thesis, Department of Computer Science, University of Toronto, 2001, Available on the web as http://www.cs.toronto.edu/NA/reports.html#hayes-01-phd
[45]
Hayes, W.B. and Jackson, K.R., Rigorous shadowing of numerical solutions of ordinary differential equations by containment. SIAM J. Numer. Anal. v41 i5. 1948-1973.
[46]
Kahaner, D., Moler, C. and Nash, S., Numerical Methods and Software. 1989. Prentice-Hall Series in Computational Mathematics, 1989.Prentice-Hall, Englewood Cliffs, NJ.
[47]
Merritt, D., Elliptical galaxy dynamics. Publ. Astronom. Soc. Pacific. v111 i756. 129-168.
[48]
In: Merritt, D., Sellwood, J.A., Valluri, M. (Eds.), ASP Conference Series, vol. 182. Astronom. Soc. of the Pacific.
[49]
Merritt, D. and Valluri, M., Chaos and mixing in triaxial stellar systems. Astrophys. J. v471. 82-105.
[50]
N.S. Nedialkov, Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation, Ph.D. Thesis, Department of Computer Science, University of Toronto, 1999
[51]
Palmer, K.J., Exponential dichotomies, the shadowing lemma and transversal homoclinic points. In: Kirchgraber, U., Walther, H.O. (Eds.), Dynamics Reported, vol. 1, Wiley and Teubner.
[52]
Palmer, K.J., Shadowing in Dynamical Systems---Theory and Applications. 2000. Kluwer Academic, Dordrecht.
[53]
Palmer, K.J. and Stoffer, D., Rigorous verification of chaotic behaviour of maps using validated shadowing. Nonlinearity. v12. 1683-1698.
[54]
Pilyugin, S.Y., Shadowing in Dynamical Systems. 1999.
[55]
Quinlan, G.D. and Tremaine, S., Shadow orbits and the gravitational N-body problem. In: Sundelius, B. (Ed.), Dynamics of Disc Galaxies, Göteborg, Sweden. pp. 143-148.
[56]
Quinlan, G.D. and Tremaine, S., On the reliability of gravitational N-body integrations. Monthly Notices Roy. Astronom. Soc. v259. 505-518.
[57]
Sanz-Serna, J.M., Symplectic integrators for Hamiltonian problems: An overview. In: Iserles, A. (Ed.), Acta Numerica 1992, Cambridge University Press, Cambridge. pp. 243-286.
[58]
Sauer, T., Grebogi, C. and Yorke, J.A., How long do numerical chaotic solutions remain valid?. Phys. Rev. Lett. v79 i1. 59-62.
[59]
Sauer, T. and Yorke, J.A., Rigorous verification of trajectories for the computer simulation of dynamical systems. Nonlinearity. v4. 961-979.
[60]
Shadwick, B.A., Bowman, J.C. and Morrison, P.J., Exactly conservative integrators. SIAM J. Appl. Math. v59 i3. 1112-1133.
[61]
R. Skeel, The meaning of molecular dynamics, 1996, unpublished, e-mail: [email protected]
[62]
Skeel, R.D., Integration schemes for molecular dynamics and related applications. In: Ainsworth, M., Levesley, J., Marletta, M. (Eds.), The Graduate Student's Guide to Numerical Analysis, SSCM, Springer, Berlin. pp. 119-176.
[63]
Smale, S., Diffeomorphisms with many periodic points. In: Cairns, S. (Ed.), Differential and Combinatorial Topology, Princeton University Press, Princeton, NJ. pp. 63-80.
[64]
Smale, S., Differentiable dynamical systems. Bull. Amer. Math. Soc. v73. 747-817.
[65]
Struck, C., Galaxy splashes: The effects of collisions between gas-rich galaxy disks. In: Clarke, D.A., West, M.J. (Eds.), ASP Conference Series, vol. 123. Astronom. Soc. of the Pacific. pp. 225-230.
[66]
Van Vleck, E.S., Numerical shadowing near hyperbolic trajectories. SIAM J. Sci. Comput. v16 i5. 1172-1189.

Cited By

View all
  • (2019)Shadowing properties of optimization algorithmsProceedings of the 33rd International Conference on Neural Information Processing Systems10.5555/3454287.3455424(12692-12703)Online publication date: 8-Dec-2019
  • (2010)Algorithm 908ACM Transactions on Mathematical Software10.1145/1824801.182481537:3(1-13)Online publication date: 1-Sep-2010

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Numerical Mathematics
Applied Numerical Mathematics  Volume 53, Issue 2-4
May, 2005
444 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 May 2005

Author Tags

  1. IVPs
  2. ODEs
  3. Shadowing
  4. Validated computing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Shadowing properties of optimization algorithmsProceedings of the 33rd International Conference on Neural Information Processing Systems10.5555/3454287.3455424(12692-12703)Online publication date: 8-Dec-2019
  • (2010)Algorithm 908ACM Transactions on Mathematical Software10.1145/1824801.182481537:3(1-13)Online publication date: 1-Sep-2010

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media