Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Weighted quadrature rules for finite element methods

Published: 01 May 2009 Publication History

Abstract

We discuss the numerical integration of polynomials times non-polynomial weighting functions in two dimensions arising from multiscale finite element computations. The proposed quadrature rules are significantly more accurate than standard quadratures and are better suited to existing finite element codes than formulas computed by symbolic integration. We validate this approach by introducing the new quadrature formulas into a multiscale finite element method for the two-dimensional reaction-diffusion equation.

References

[1]
Appell, P. and de Fériet, J.K., Fonctions Hypergéométriques et Hyperspheriques-Polynomes d'Hermite. 1926. Gauthier-Villars, Paris.
[2]
Araya, R. and Valentin, F., A multiscale a posteriori error estimate. Comput. Methods Appl. Mech. Engrg. v194. 2077-2094.
[3]
Babuška, I., Banerjee, U. and Osborn, J., Generalized finite element methods-Main ideas, results and perspectives. Int. J. Comput. Methods. v1. 67-103.
[4]
Babuška, I., Caloz, G. and Osborn, J., Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. v31. 945-981.
[5]
Babuška, I. and Osborn, J., Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal. v20. 510-536.
[6]
Babuška, I. and Osborn, J., Finite element methods for the solution of problems with rough input data. In: Grisvard, P., Wendland, W., Whiteman, J. (Eds.), Lecture Notes in Mathematics, vol. 1121. Springer-Verlag, Heildelberg. pp. 1-18.
[7]
Bettess, P., Shirron, J., Laghrouche, O., Peseux, B., Sugimoto1, R. and Trevelyan, J., A numerical integration scheme for special finite elements for the Helmholtz equation. Int. J. Numer. Methods Engrg. v56. 531-552.
[8]
Brezzi, F., Franca, L.P., Hughes, T.J.R. and Russo, A., b=¿g. Comput. Methods Appl. Mech. Engrg. v145. 329-339.
[9]
Brooks, A.N. and Hughes, T.J., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. v32. 199-259.
[10]
Cohen, G., Joly, P., Roberts, J. and Tordjman, N., Higher-order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal. v38. 2047-2078.
[11]
Davis, P. and Rabinowitz, P., Methods of Numerical Integration. 1984. 2nd ed. Academic Press, San Diego.
[12]
de Groen, P. and Hemker, P., Error bounds for exponentially fitted Galerkin methods applied to stiff two-point boundary value problems. In: Hemker, P., Miller, J. (Eds.), Numerical Analysis of Singular Perturbations, Academic Press, New York. pp. 217-249.
[13]
Dunavant, D.A., High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Engrg. v21. 1129-1148.
[14]
Farhat, C., Harari, I. and Franca, L., The discontinuous enrichment method. Comput. Methods Appl. Mech. Engrg. v190. 6455-6479.
[15]
Franca, L., Madureira, A., Tobiska, L. and Valentin, F., Convergence analysis of a multiscale finite element method for singularly perturbed problems. Multiscale Model. Simul. v4. 839-866.
[16]
Franca, L., Madureira, A. and Valentin, F., Towards multiscale functions: Enriching finite element spaces with local but not bubble-like functions. Comput. Methods Appl. Mech. Engrg. v60. 3006-3021.
[17]
Hammer, P.C., Marlowe, O.J. and Stroud, A.H., Numerical integration over simplexes and cones. Math. Tables Aids Comput. v10. 130-137.
[18]
Hou, T.Y. and Wu, X.-H., A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. v134. 169-189.
[19]
Hughes, T., The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. 1987. Prentice-Hall, Englewood Cliffs.
[20]
Hughes, T., Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg. v127. 387-401.
[21]
Hughes, T.J., A simple scheme for developing 'upwind' finite elements. Int. J. Numer. Methods Engrg. v12. 1359-1365.
[22]
Hughes, T.J. and Brooks, A.N., A multi-dimensional scheme with no crosswind diffusion. In: Hughes, T.J. (Ed.), AMD, vol. 34. ASME, New York. pp. 19-35.
[23]
Liu, Y. and Vinokur, M., Exact integrations of polynomials and symmetric quadrature formulas over arbitrary polyhedral grids. J. Comput. Phys. v140. 122-147.
[24]
Moan, T., Experiences with orthogonal polynomials and "best" numerical integration formulas on a triangle; with particular reference to finite element approximations. Z. Angew. Math. Mech. v54. 501-508.
[25]
S.P. Oliveira, Discontinuous enrichment methods for computational fluid dynamics, Ph.D. Thesis, University of Colorado at Denver, 2002
[26]
Sacco, R. and Stynes, M., Finite element methods for convection-diffusion problems using exponential splines on triangles. Computers Math. Appl. v35. 35-45.
[27]
Stroud, A.H., Approximate Calculation of Multiple Integrals. 1971. Prentice-Hall, Englewood Cliffs.
[28]
Sunder, K.S. and Cookson, R.A., Integration points for triangles and tetrahedrons obtained from the Gaussian quadrature points for a line. Comput. Struct. v21. 881-885.

Cited By

View all
  • (2017)An alternate stable midpoint quadrature to improve the element stiffness matrix of quadrilaterals for application of functionally graded materials (FGM)Computers and Structures10.1016/j.compstruc.2016.10.008178:C(71-87)Online publication date: 1-Jan-2017

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics  Volume 227, Issue 1
May, 2009
221 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 May 2009

Author Tags

  1. 65D30
  2. 65D32
  3. 65N30
  4. 76M10
  5. Finite element method
  6. Numerical integration

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2017)An alternate stable midpoint quadrature to improve the element stiffness matrix of quadrilaterals for application of functionally graded materials (FGM)Computers and Structures10.1016/j.compstruc.2016.10.008178:C(71-87)Online publication date: 1-Jan-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media