Nothing Special   »   [go: up one dir, main page]

skip to main content
article

Cross Domain Framework for Implementing Recommendation Systems Based on Context Based Implicit Negative Feedback

Published: 01 January 2012 Publication History

Abstract

The last decade met a remarkable proliferation of P2P networks, PDMS, semantic web, communitarian websites, electronic stores, etc. resulting in an overload of available information. One of the solutions to this information overload problem is using efficient tools such as the recommender system which is a personalization system that helps users to find items of interest based on their preferences. Several such recommendation engines do exist under different domains. However these recommendation systems are not very effective due to several issues like lack of data, changing data, changing user preferences, and unpredictable items. This paper proposes a novel model of Recommendation systems in e-commerce domain which will address issues of cold start problem and change in user preference problem. This model is based on studying implicit negative feedback from users in cross domain collaborative environment to identify user preferences effectively. The authors have also identified a list of parameters for this study.

References

[1]
Abbar, S., Bouzeghoub, M., Kostadinov, D., Lopes, S., Aghasaryan, A., & Betge-Brezetz, S. 2008. A personalized access model: Concepts and services for content delivery platforms. In Proceedings of the 10th International Conference on Information Integration and Web-based Applications & Services pp. 41-47.
[2]
Abbar, S., Bouzeghoub, M., & Lopez, S. 2009. Context aware recommender systems: A service oriented approach. In Proceedings of the 3rd International Workshop on Personalized Access, Profile Management, and Context Awareness in Databases pp. 1-6.
[3]
Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. 2005. Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems, 231, 103-145.
[4]
Adomavicius, G., & Tuzhilin, A. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 176, 734-749.
[5]
Aggarwal, C. C., Wolf, J. L., Wu, K., & Yu, P. S. 1999. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining pp. 201-212.
[6]
Agrawal, R., Rantzau, R., & Terzi, E. 2006. Context-sensitive ranking. In Proceedings of the ACM SIGMOD International Conference on Management of Data pp. 383-394.
[7]
Anand, S. S., & Mobasher, B. 2007. Contextual recommendation. In B. Berendt, A. Hotho, D. Mladenic, & G. Semeraro Eds., Proceedings of the International Conference on Discovering and Deploying User and Content Profiles LNCS 4737, pp. 142-160.
[8]
Baltrunas, L. 2008. Exploiting contextual information in recommender systems. In Proceedings of the ACM International Conference on Recommender Systems pp. 295-298.
[9]
Ben Schafer, J., Konstan, J., & Riedi, J. 1999, November. Recommender systems in e-commerce. In Proceedings of the 1st ACM Conference on Electronic Commerce pp. 158-166.
[10]
Billsus, D., & Pazzani, M. J. 1998. Learning collaborative information filters. In Proceedings of International Conference on Machine Learning pp. 46-53.
[11]
Breese, J. S., Heckerman, D., & Kadie, C. 1998. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence pp. 43-52.
[12]
Burke, R. 2002. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 124, 331-370.
[13]
Cattuto, C., Loreto, V., & Pietronero, L. 2007. Semiotic dynamics and collaborative tagging. Proceedings of the National Academy of Sciences of the United States of America, 1045, 1461-1464. 17244704.
[14]
Chen, G., & Kotz, D. 2000. A survey of context-aware mobile computing research Tech. Rep. No. TR2000-381. Hanover, NH: Dartmouth College.
[15]
Clements Vries, A. P., & Reinders, M. J. 2009. Exploiting positive and negative graded relevance assessments for content recommendation. In K. Avrachenkov, D. Donato, & N. Litvak Eds., Proceedings of the 6th International Workshop on Algorithms and Models for the Web-Graph LNCS 5427, pp. 155-166.
[16]
Cremonesi, P., & Turrin, R. 2009, October. Analysis of cold-start recommendations in iptv systems. In Proceedings of the Third ACM Conference on Recommender Systems pp. 233-236.
[17]
Dev, A. K. 2001. Understanding and using context. Personal and Ubiquitous Computing, 51, 4-7.
[18]
Dey, A. K., Abowd, G. D., & Salber, D. 2001. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction Journal, 16, 970166.
[19]
Dourish, P. 2004. What we talk about when we talk about context. Personal and Ubiquitous Computing, 81, 19-30.
[20]
Godoy, D., & Amandi, A. 2008. Hybrid content and tag-based profiles for recommendation in collaborative tagging systems. In Proceedings of the Latin American Web Conference pp. 58-65.
[21]
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. 1992. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 3512, 61-70.
[22]
Golder, S. A., & Huberman, B. A. 2006. Usage patterns of collaborative tagging systems. Journal of Information Science, 322, 198-208.
[23]
Good, N., Schafer, B., Konstan, J., Borchers, A., Sarwar, B., Herlocker, J., & Riedl, J. 1999. Combining collaborative filtering with personal agents for better recommendations. In Proceedings of the AAAI Conference pp. 439-446.
[24]
Hill, W., Stead, L., Rosenstein, M., & Furnas, G. 1995. Recommending and evaluating choices in a virtual community of use. In Proceedings of ACM CHI Conference on Human Factors in Computing Systems pp. 194-201.
[25]
Hotho, A., Jaschke, R., Schmitz, C., & Stumme, G. 2006. Information retrieval in folksonomies: Search and ranking. In Y. Sure & J. Domingue Eds., Proceedings of the 3rd European Semantic Web Conference LNCS 4011, pp. 411-426.
[26]
Huang, Z., Chen, H., & Zeng, D. 2004. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Transactions on Information Systems, 221, 116-142.
[27]
Kim, J., Kim, H., & Ryu, J. H. 2009. A trip planning service with tag-based recommendation. In Proceedings of Extended Abstracts on Human Factors in Computing Systems pp. 3467-3472. TripTip.
[28]
Kirmani, A. 2009, March. Including recommendations in user interfaces to enhance motivation. Retrieved from http://www.uxmatters.com/mt/archives/2009/03/including-recommendations-in-user-interfaces-to-enhance-motivation.php
[29]
Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., & Riedl, J. 1997. GroupLens: Applying collaborative filtering to usenet news. Communications of the ACM, 403, 77-87.
[30]
Lee, D. H., & Brusilovsky, P. 2009. Reinforcing recommendation using implicit negative feedback. In G.-J. Houben, G. McCalla, F. Pianesi, & M. Zancanaro Eds., Proceedings of the 17th International Conference on User Modeling, Adaptation, and Personalization LNCS 5535, pp. 422-427.
[31]
Leung, K. W. T., & Lee, D. L. 2010. Deriving concept-based user profiles from search engine logs. IEEE Transactions on Knowledge and Data Engineering, 227, 969-982.
[32]
Leung, K. W.-T., Ng, W., & Lee, D. L. 2008. Personalized concept-based clustering of search engine queries. IEEE Transactions on Knowledge and Data Engineering, 2011, 1505-1518.
[33]
Liu, J. G., Wang, B. H., & Guo, Q. 2009. Improved collaborative filtering algorithm via information transformation. International Journal of Modern Physics C, 202, 285-293.
[34]
Mishne, G. 2006. AutoTag: A collaborative approach to automated tag assignment for weblog posts. In Proceedings of the 15th International Conference on World Wide Web pp. 953-954.
[35]
Montaner, M., Lopez, B., & de la Rosa, J. L. 2003. A taxonomy of recommender agents on the internet. Artificial Intelligence Review, 194, 285-330.
[36]
Nakamoto, R. Y., Nakajima, S., Miyazaki, J., & Uemura, S. 2007. Tag-based contextual collaborative filtering. IAENG International Journal of Computer Science, 342, 214-219.
[37]
Nichols, D. M. 1997. Implicit rating and filtering. In Proceedings of the Fifth DELOS Workshop on Filtering and Collaborative Filtering.
[38]
Nouali, O., & Belloui, A. 2009. Using semantic web to reduce the cold-start problems in recommendation systems. In Proceedings of the Conference on Applications of Digital Information and Web Technologies pp. 525-530.
[39]
Palmisano, C., Tuzhilin, A., & Gorgoglione, M. 2007. User profiling with hierarchical context: An e-retailer case study. In B. Kokinov, D. C. Richardson, T. R. Roth-Berghofer, & L. Vieu Eds., Proceedings of the 6th International Conference on Modeling and Using Context LNCS 4635, pp. 369-383.
[40]
Pazzani, M. J., & Billsus, D. 2007. Content-based recommendation systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl Eds., Proceedings of Methods and Strategies of Web Personalization LNCS 4321, pp. 325-341.
[41]
Pereira Filho, J. G., Pessoa, R. M., & Calvi, C. Z. 2006. INFRAWARE: A support middleware to context-aware mobile applications in Portuguese. In Proceedings of the 24th Simpsio Brasileiro de Redes de Computadores.
[42]
Rao, N., & Talwar, V. G. 2008. Application domain and functional classification of recommender systems: A survey. DESIDOC Journal of Library & Information Technology, 283, 17-35.
[43]
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. 1994. GroupLens: an open architecture for collaborative filtering of netnews. In Proceedings of the ACM Conference on Computer Supported Cooperative Work pp. 175-186.
[44]
Resnick, P., & Varian, H. R. 1997. Recommender systems. Communications of the ACM, 403, 56-60.
[45]
Sarwar, B. M., Karypis, G., Konstan, J. A., & Riedl, J. 2000. Application of dimensionality reduction in recommender system: A case study. In Proceedings of the ACM WebKDD Workshop on Web Mining for Ecommerce pp. 264-268.
[46]
Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. 1998. Using filtering agents to improve prediction quality in the grouplens research collaborative filtering system. In Proceedings of the ACM Conference on Computer Supported Cooperative Work.
[47]
Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J. X., & Weikum, G. 2008. Efficient top-k querying over social-tagging networks. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval pp. 523-530.
[48]
Shang, M. S., & Zhang, Z. K. 2009. Diffusion-based recommendation in collaborative tagging systems. Chinese Physics Letters, 2611.
[49]
Sigurbjörnsson, B., & Zwol, R. V. 2008. Flickr tag recommendation based on collective knowledge. In Proceedings of the ACM 17th International Conference on World Wide Web pp. 327-336.
[50]
Song, X. D., Chi, Y., Hino, K., & Tseng, B. L. 2007. Information flow modeling based on diffusion rate for prediction and ranking. In Proceedings of the 16th ACM International Conference on World Wide Web pp. 191-200.
[51]
Stefanidis, K., & Pitoura, E. 2008. Fast contextual preference scoring of database tuples. In Proceedings of the 11th International Conference on Extending Database Technology pp. 344-355.
[52]
Stefanidis, K., Pitoura, E., & Vassiliadis, P. 2007. A context-aware preference database system. International Journal of PCC, 439-460.
[53]
Tso, K., & Schmidt-Thieme, L. 2005. Attribute-aware collaborative filtering. In Proceedings of the 29th Annual Conference of the German Classification Society.
[54]
Tso-Sutter, K. H. L., Marinho, L. B., & Schmidt-Thieme, L. 2008. Tag-aware recommender systems by fusion of collaborative filtering algorithms. In Proceedings of the ACM Symposium on Applied Computing pp. 1995-1999.
[55]
Van Setten, M. 2005. Supporting people in finding information: Hybrid recommender systems and goal based structuring. Sweden: Telematica Institute Fundamental Research.
[56]
Warren, K. S. 1987. Coping with the biomedical literature: A primer for scientists and clinicians. Selective Aspects of the Biomedical Literature, 25719, 2628-2629.
[57]
Weng, L. T., Xu, Y., Li, Y., & Nayak, R. 2008. Exploiting item taxonomy for solving cold-start problem in recommendation making. In Proceedings of the 20th IEEE International Conference on Tools with Artificial Intelligence Vol. 2, pp. 113-120.
[58]
Wurman, R. S. 1989. Information anxiety. New York, NY: Doubleday.
[59]
Yin, H., Chang, G., & Wang, X. A cold-start recommendation algorithm based on new user's implicit information and multi-attribute rating matrix. In Proceedings of the Ninth International Conference on Hybrid Intelligent Systems Vol. 2, pp. 353-358.
[60]
Zhang, D. 2009. An item-based collaborative filtering recommendation algorithm using slope one scheme smoothing. In Proceedings of the Second International Symposium on Electronic Commerce and Security Vol. 2, pp. 215-217.
[61]
Zhang, Y. C., Blattner, M., & Yu, Y. K. 2007. Heat conduction process on community networks as a recommendation model. Physical Review Letters, 9915, 154301. 17995171.
[62]
Zhang, Y. C., Medo, M., Ren, J., Zhou, T., Li, T., & Yang, F. 2007. Recommendation model based on opinion diffusion. Europhysics Letters, 806, 68003.
[63]
Zhang, Z. K., Lu, L., Liu, J. G., & Zhou, T. 2008. Empirical analysis on a keyword-based semantic system. The European Physical Journal B, 664, 557-561.
[64]
Zhang, Z. K., Zhou, T., & Zhang, Y. 2010. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. Physica A: Statistical Mechanics and its Applications, 3891, 179-186.
[65]
Zhou, T., Jiang, L. L., Su, R. Q., & Zhang, Y. C. 2008. Effect of initial configuration on network-based recommendation. Europhysics Letters, 815, 58004.
[66]
Zhou, T., Ren, J., Medo, M., & Zhang, Y. C. 2007. Bipartite network projection and personal recommendation. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 764.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Information Systems and Social Change
International Journal of Information Systems and Social Change  Volume 3, Issue 1
January 2012
93 pages
ISSN:1941-868X
EISSN:1941-8698
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 01 January 2012

Author Tags

  1. Change in User Preference Problem
  2. Cold Start Problem
  3. Cross Domain Environment
  4. Implicit Negative Feedback
  5. Recommendation Systems

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media